Cho ∆EKF nhọn (EK < EF). Gọi I và H lần lượt là trung điểm EK và EF. Dựng T đối xứng F qua I và N đối xứng K qua H. a) Chứng minh KFET là hình bình hành và suy ra TK // EF. b) Chứng minh EN // KF c) Chứng minh T; E và N thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác KFET có
I là trung điểm của EK
I là trung điểm của FT
Do đó: KFET là hình bình hành
Suy ra: TK//EF
a: Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
AECF là hình bình hành => EN // AM
E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.
Tương tự, M là trung điểm của DN, do đó DM = MN.
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔCDM có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NM=NC(1)
Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
Suy ra: AM=MN(2)
từ (1) và (2) suy ra AM=MN=NC
a: Xét ΔEBH và ΔFCH có
EB=FC
\(\widehat{B}=\widehat{C}\)
BH=CH
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của EF(1)
Ta có: AE=AF
nên A nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra E và F đối xứng nhau qua AH
xét tam giác abc có e là trung điểm của ab (gt)
f là trunng điểm của ac (gt)
=> ef là đường tuẻng bình của tam giác abc(dn....)
=> ef//bc=>efcb là hiình thang
b)có ef là đường trung bình của tam giác abc (cmt)
=> ef=1/2 bc hay ef+ef=bc mà ef=de =>de+ef=bc => df=bc mà df//bc( vì ef//bc cmt)
=> dfcb là hình bình hành (dn...)
a) Ta có: CF = AF = AC / 2 (F là trung điểm của AC)
BE = AE = AB / 2 (E là trung điểm AB)
Mà AC = AB (tam giác ABC cân tại A)
=> AF = AE = CF = BE
=> tam giác AFE cân tại A (1)
Ta có: F, E lần lượt là trung điểm của AC, AB (gt)
=> FE là đường trung bình của tam giác ABC
=> FE // BC
Mà AI vuông góc với CB (AI là đường cao)
=> AI vuông góc với FE (2)
Từ (1), (2) => AI cũng là đường trung trực của FE (giải thích thêm: tính chất các đường thẳng từ đỉnh của tam giác cân)
=> E đối xứng với F qua AI (đpcm)
b) Xét tứ giác FEBC, có:
* EF // BC (cmt)
=> FEBC là hình thang
Mà FC = EB (cmt)
=> FEBC là hình thang cân
Xét tam giác FOC và tam giác EOB, có:
* FC = EB (cmt)
* góc CFO = góc BEO (FEBC là hình thang cân)
* FO = EO (E đối xứng với F qua O; O thuộc AI)
=> tam giác FOC = tam giác EOB (c.g.c)
=> góc FOC = góc EOB (yếu tố tương ứng)
Mà góc HOF, góc KOE lần lượt đối đỉnh với góc EOB và góc FOC
=> góc HOF = góc KOE
Xét tam giác HOF và tam giác KOE, có:
* góc HFO = góc KEO ( tam giác AFE cân tại A)
* FO = EO (E đối xứng với F qua AO)
* góc HOF = góc KOE (cmt)
=> tam giác HOF = tam giác KOE (g.c.g)
=> HF = KE (yếu tố tương ứng) (đpcm)
c) Xét tam giác HOK, có:
* OH = OK ( tam giác HFO = tam giác KEO)
=> tam giác HOK cân tại O
=> góc OHK = góc OKH (t/c)
Ta có: góc AOH + góc HOF = 90 độ (AI vuông góc FE)
góc AOK + góc KOE = 90 độ (AI vuông góc FE)
Mà góc HOF = góc KOE (cmt)
=> góc AOH = góc AOK
=> OA là phân giác của góc HOK
=> OA cũng là đường trung trực của tam giác cân OKH
=> OA vuông góc HK ( t/c)
Mà OA vuông góc FE ( AI vuông góc FE ; O thuộc AI)
=> HK // FE
Mà FE // CB (cmt)
=> HK // CB
=> HKBC là hình thang
Mà góc HCB = góc KBC ( tam giác ABC cân tại A; H thuộc AC; K thuộc AB)
=> HKBC là hình thang cân (đpcm)
a: Xét ΔDEF có
M là trung điểm của FE
N là trung điểm của DF
Do đó: MN là đường trung bình của ΔDEF
Suy ra: MN//DE
hay DNME là hình thang vuông
a: Xét tứ giác KFET có
I là trung điểm của EK
I là trung điểm của FT
Do đó: KFET là hình bình hành
Suy ra: TK//EF