Tìm a và b biết đồ thị hàm số đi qua các điểm (\(\sqrt{2}\); 4- \(\sqrt{2}\)) và ( 2; \(\sqrt{2}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot\sqrt{2}+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\left(\sqrt{2}-2\right)=4-2\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=\dfrac{4-2\sqrt{2}}{\sqrt{2}-2}=-2\\b=\sqrt{2}+4\end{matrix}\right.\)
Đồ thị hàn số y = a\(x\) + b đi qua các điểm A (\(\sqrt{2}\); 4 - \(\sqrt{2}\)) vàB (2; \(\sqrt{2}\))
Thay tọa độ điểm A, B vào pt đồ thị ta có:
\(\left\{{}\begin{matrix}\sqrt{2}.a+b=4-\sqrt{2}\\2a+b=2+\sqrt{2}\end{matrix}\right.\)
Trừ vế cho vế ta có: 2a + b - (\(\sqrt{2}\)a + b) = 2 + \(\sqrt{2}\) - (4 - \(\sqrt{2}\))
2a + b - \(\sqrt{2}\)a - b = -2 + 2\(\sqrt{2}\)
2a - \(\sqrt{2}\)a = - 2 + 2\(\sqrt{2}\)
a.(2 - \(\sqrt{2}\)) = -2 + 2\(\sqrt{2}\)
a = (-2 + 2\(\sqrt{2}\)) : (2 - \(\sqrt{2}\))
a = \(\sqrt{2}\)
b = 2 + \(\sqrt{2}\) - 2\(\sqrt{2}\)
b = 2 - \(\sqrt{2}\)
a: Thay x=1 và y=0 vào (d), ta được:
1-2m+3=0
\(\Leftrightarrow m=2\)
a, y = ax^2 đi qua B(2;4)
<=> 4a = 4 <=> a = 1
b, bạn tự vẽ
a: Thay x=2 và y=4 vào hàm số, ta được:
\(a\cdot4=4\)
hay a=1
b: Thay x=2 và y=4 vào hàm số, ta được:
4a=4
hay a=1
a, có gt x = -3
gt y = 2
=> a = 2 : (-3) = \(\frac{-2}{3}\)
b, D (1,5;-1)
E (-4;6)
c, A (4;2)
a: Thay x=-2 và y=3 vào (d), ta được:
-2a=3
hay a=-3/2
Gọi pt đường thẳng có dạng \(y=ax+b\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{2}a+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2-\sqrt{2}\right)a=2\sqrt{2}-4\\2a+b=\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=4+\sqrt{2}\end{matrix}\right.\)