K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://olm.vn/hoi-dap/detail/54671443759.html

Ta thấy: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{49.50}\)

               \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)

               \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(1-\frac{1}{50}\)

Suy ra:

A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1^2}+\left(1-\frac{1}{50}\right)\)

                               A<1+1-\(\frac{1}{50}\)

                               A<2-\(\frac{1}{50}\)<2

             Vậy A<2(đpcm)

                              

17 tháng 4 2016

em viết sai 

chứng minh A < 2

1 tháng 10 2016

Tham khảo tại link sau : olm.vn/hoi-dap/question/687403.html

Tham khảo nha bạn :

Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến

20 tháng 12 2016

Mình sửa chút: B>1