cho tam giác ABC vg tại A biết AB + AC =9cm , AB - AC =7cm tính cạnh BC ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB là
( 49 + 7 ) : 2 = 28
AC là
28 - 7 = 21
Xét tam giác ABC vuông tại A
AB^2 + AC^2 = BC^2
21^2 + 28^2 = BC^2
BC^2 = 1225
BC = 35
ta có
\(BC^2=AB^2+AC^2=\frac{\left(AC+AB\right)^2}{2}+\frac{\left(AC-AB\right)^2}{2}=\frac{49^2+7^2}{2}=1225\)
Vậy \(BC=\sqrt{1225}=35cm\)
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
a, Áp dụng định lý Pitago:
`AB^2 + AC^2 = BC^2`
`=> 25 + AC^2 = 169`
`=> AC^2 = 144`
`=> sqrt 144 = 12`.
b. Áp dụng định lý Pytago ta có:
`AB^2 + AC^2 = BC^2`
`16 + 49 = BC^2`
`BC^2 = 65`
`BC = sqrt 65`.
Áp dụng định lí Pitago trong tam giác ABC vuông tại A
AC = BC2 + AB2
= 132 + 52
= \(\sqrt{194}\) = 14 cm
Áp dụng định lí Pitago trong tam giác ABC cân tại A
BC = AB2 + AC2
= 42 + 72
= \(\sqrt{65}\) = 8 cm
Tam giác ABC vuông tại A áp dụng đính lý cạnh góc vuông và hình chiếu ta có::
\(AB^2=BC\cdot HB=BC\cdot\left(BC-HC\right)\)
\(\Rightarrow20^2=BC^2-BC\cdot9\)
\(\Rightarrow BC^2-9BC-400=0\)
\(\Rightarrow BC^2+16BC-25BC-400=0\)
\(\Rightarrow BC\left(BC+16\right)-25\left(BC+16\right)=0\)
\(\Rightarrow\left(BC+16\right)\left(BC-25\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}BC+16=0\\BC-25=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}BC=-16\left(ktm\right)\\BC=25\left(tm\right)\end{matrix}\right.\)
Áp dụng hệ thức đường cao và hình chiếu ta có:
\(AH^2=HC\cdot HB\Rightarrow AH=\sqrt{HC\cdot\left(BC-HC\right)}\)
\(\Rightarrow AH=\sqrt{9\cdot\left(25-9\right)}=12\left(cm\right)\)
Diện tích của tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot AH=\dfrac{1}{2}\cdot25\cdot12=150\left(cm^2\right)\)
Ta có:
\(\left\{{}\begin{matrix}AB+AC=9cm\left(gt\right)\\AB-AC=7cm\left(gt\right)\end{matrix}\right.\)
Cộng theo các vế ta được:
\(\left(AB+AC\right)+\left(AB-AC\right)=9+7\)
\(\Rightarrow\left(AB+AC\right)+\left(AB-AC\right)=16\)
\(\Rightarrow AB+AC+AB-AC=16\)
\(\Rightarrow2AB=16\)
\(\Rightarrow AB=16:2\)
\(\Rightarrow AB=8\left(cm\right).\)
Có: \(AB+AC=9cm\left(gt\right)\)
\(\Rightarrow8+AC=9\)
\(\Rightarrow AC=9-8\)
\(\Rightarrow AC=1\left(cm\right).\)
+ Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go).
=> \(BC^2=8^2+1^2\)
=> \(BC^2=64+1\)
=> \(BC^2=65\)
=> \(BC=\sqrt{65}\left(cm\right)\) (vì \(BC>0\)).
Vậy \(BC=\sqrt{65}\left(cm\right).\)
Chúc bạn học tốt!