Biết rằng khi a,b thay đổi thỏa mãn ab khác 0 thì giao điểm của hai đường thẳng d : ax + by = 0
và d' : bx -ay = 1 luôn nằm trên đường tròn đơn vị tâm O(0,0). Tìm giá trị lớn nhất của ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\left\{{}\begin{matrix}\left(d_1\right):y=3x-m-1\\\left(d_2\right):y=2x+m-1\\\left(d_3\right):y=ax+b\end{matrix}\right.\)
Phương trình hoành độ giao điểm của (d1) và (d2) trên:
\(3x-m-1=2x+m-1\)
\(\Leftrightarrow x=2m\)
Thay \(x=2m\) vào \(y=3x-m-1\) ta được:
\(y=3.2m-m-1=5m-1\)
Vậy toạ độ giao điểm của (d1) và (d2) là \(\left(2m;5m-1\right)\)
Vì giao điểm của (d1) và (d2) luôn nằm trên (d3):y=ax+b nên ta có:
\(5m-1=a.\left(2m\right)+b\forall m\)
\(\Rightarrow m\left(2a-5\right)+b+1=0\forall m\)
\(\Rightarrow\left\{{}\begin{matrix}2a-5=0\\b+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=-1\end{matrix}\right.\)
\(2a-b=6\). Chọn B.
\(a,M\in\left(d\right)\Rightarrow a.0+b.2=-2\)
\(\Rightarrow b=-1\)
\(\Rightarrow\left(d\right)ax-y=-2\)
\(\Rightarrow\left(d\right)y=ax+2\)
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình
\(\frac{x^2}{4}=ax+2\)
\(\Leftrightarrow x^2-4ax-8=0\)(1)
Có \(\Delta'=4a^2+8>0\)
Nên pt (1) luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B
b, Gọi 2 điểm A và B có tọa độ là \(A\left(x_1;y_1\right);B\left(x_2;y_2\right)\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=4a\\x_1x_2=-8\end{cases}}\)
Vì \(A;B\in\left(P\right)\Rightarrow\hept{\begin{cases}y_1=\frac{x_1^2}{4}\\y_2=\frac{x_2^2}{4}\end{cases}}\)
Ta có \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(y_1+y_2\right)^2-4y_1y_2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1^2+x_2^2}{4}\right)^2-4.\frac{x_1^2x_2^2}{4.4}}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\frac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{4}-\frac{x_1^2x_2^2}{4}}\)
\(=\sqrt{16a^2+32+\frac{\left(16a^2+16\right)^2}{4}-\frac{64}{4}}\)
\(\ge\sqrt{16.0+32+\frac{\left(16.0+16\right)^2}{4}-\frac{64}{4}}=4\sqrt{5}\)
Dấu "=" <=> a = 0
Đáp Án A
Gọi O là hình chiếu của A lên mp (P)
Ta có ptAO: x = 4 + t y = 6 + t z = 2 + t
⇒ t=-4 ⇒ O(0,2;-2)
Có HB ⊥ AO; HB ⊥ HA ⇒ HB ⊥ (AHO)
⇒ HB ⊥ HO
Ta có B;O cố định
Suy ra H nằm trên đường tròng đường kính OB cố định
⇒ r= 1 2 OB= 6