CMR nếu p là số nguyên tố lớn hơn 5 thì p-4 không thể là lũy thừa bậc 4 của một số tự nhiên.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LP
26 tháng 11 2015
Vì p>5 thì p là số lẻ nên không thể nào làm lũy thừa bậc 4 của một số tự nhiên
3 tháng 2 2020
Đặt \(p-4=a^4\)với \(a\inℕ\). Dễ thấy \(p>5\)thì a>1
\(\Rightarrow p=a^4+4=\left(a^2\right)^2+2a^2+2a^2+4-4a^2\)
\(=\left(a^2+2\right)^2-\left(2a\right)^2=\left(a^2+2-2a\right)\left(a^2+2+2a\right)\)
Với \(a>1\)thì \(a^2+2-2a>1\)và \(a^2+2+2a>1\)nên
\(\left(a^2+2-2a\right)\left(a^2+2+2a\right)\)là hợp số hay p là hớp số ( vô lí vì \(p\in P\))
Do đó p là snt lớn hơn 5 thì p-4 không thể là lũy thừa bậc 4 của 1 số tự nhiên
Chúc bạn học tốt !!!
CC
0
G
0
Lời giải:
Đặt $p-4=a^4$ với $a\in\mathbb{N}$. Dễ thấy $p>5$ thì $a> 1$
$\Rightarrow p=a^4+4=(a^2)^2+2a^2+2a^2+4-4a^2$
$=(a^2+2)^2-(2a)^2=(a^2+2-2a)(a^2+2+2a)$
Với $a>1$ thì $a^2+2-2a>1$ và $a^2+2+2a>1$ nên $(a^2+2-2a)(a^2+2+2a)$ là hợp số hay $p$ là hợp số (vô lý vì $p\in\mathbb{P}$)
Do đó với $p$ là snt lớn hơn $5$ thì $p-4$ không thể là lũy thừa bậc 4 của 1 số tự nhiên.