K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

Đặt 

\(\sqrt{5-4x}=a\)

\(\sqrt{x+3}=b\)

Ta có

\(a^2+4b^2=17\)

Pt ban đầu 

<=>\(a+2b+4ab=13\)

Đến đây ta giải hệ pt

\(\int^{a+2b+4ab=13}_{a^2+4b^2=17}\) <=>\(\int^{a+2b+4ab=13}_{\left(a+2b\right)^2-4ab=17}\)

Đặ a+2b =u

ab=z

Khi đó hệ pt trở thành

\(\int^{u+4z=13}_{u^2-4z=17}\)  <=>\(\int^{u=13-4z}_{\left(13-4z\right)^2-4z=17}\)

từ đây ta sẽ tìm ra u và z

Từ đó thay ngược để tìm ra a và b 

thay vào tiếp để tìm ra x,y

hơi dài chứ ko ngắn đâu Thắng

22 tháng 7 2021

mong mọi người giải giúp em vs gianroigianroi

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm