K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

đường thẳng d đi qua điểm (-2,-2) thì bạn cứ thay tụi nó vào x, y của pt bậc nhất

cho d=P để tìm hoành độ tứ là x, sau đó thay vào pt bậc nhất của d để tìm y

chú ý: chúng tiếp xúc nên có nghiệm kép=> Δ=0

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Lời giải:

a. Với $m=1$ thì ptđt $(d)$ là: $y=x+1$

b. Trung điểm của 2 đường thẳng??? Đường thẳng thì làm gì có trung điểm hả bạn? Đoạn thẳng thì có.

c. $(d)$ cắt $y=x-2$ tại điểm có hoành độ $-1$

$\Leftrightarrow$ PT hoành độ giao điểm $(2-m)x+2m-1-(x-2)=0$ nhận $x=-1$ là nghiệm 

$\Leftrightarrow (2-m)(-1)+2m-1-(-1-2)=0$
$\Leftrightarrow m=0$

 

Bài 1: 

a) Để hàm số y=(k-2)x+k+3 là hàm số bậc nhất thì \(k\ne2\)

b) Để hàm số y=(k-2)x+k+3 đồng biến trên R thì k-2>0

hay k>2

Bài 2: 

Thay \(x=-\dfrac{1}{2}\) và \(y=\dfrac{2}{3}\) vào (D), ta được:

\(\left(2m-3\right)\cdot\dfrac{-1}{2}-\dfrac{1}{2}=\dfrac{2}{3}\)

\(\Leftrightarrow\left(2m-3\right)\cdot\dfrac{-1}{2}=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)

\(\Leftrightarrow2m-3=\dfrac{7}{6}:\dfrac{-1}{2}=\dfrac{-7}{6}\cdot\dfrac{2}{1}=-\dfrac{14}{6}=-\dfrac{7}{3}\)

\(\Leftrightarrow2m=\dfrac{-7}{3}+3=\dfrac{-7}{3}+\dfrac{9}{3}=\dfrac{2}{3}\)

hay \(m=\dfrac{1}{3}\)

a: Vì (d)//y=2x+3 nên a=2

Vậy: y=2x+b

Thay x=1 và y=-2 vào (d), ta được:

b+2=-2

hay b=-4

Vậy: (d): y=2x-4

c: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}-4x+3=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{6}\\y=-\dfrac{5}{3}\end{matrix}\right.\)

d: Vì hai đường song song nên 2m-3=2

=>2m=5

hay m=5/2

a) Thay x=1 và y=2 vào (P), ta được:

\(a\cdot1^2=2\)

hay a=2

4 tháng 4 2021

giải hộ mình câu c dc ko :)

 

b: Phương trình hoành độ giao điểm là:

-x+3=-2x+1

\(\Leftrightarrow x=-2\)

Thay x=-2 vào y=-x+3, ta được;
y=2+3=5

Thay x=-2 và y=5 vào (d), ta được:

\(-2\left(2-m\right)+2m-1=5\)

\(\Leftrightarrow2m-4+2m-1=5\)

\(\Leftrightarrow4m=10\)

hay \(m=\dfrac{5}{2}\)

23 tháng 11 2021

Đây nhé bn !undefined