Tìm các giá trị của m để p/trình sau có nghiệm, vô nghiệm:
\(x^2+mx+12=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với m=0: -4x+4 = 0 Suy ra x= 1
Với m =1 x^2-4x+4 = 0 SUy ra x=2
Với m =2 Suy ra 2(x^2-2x+2)=0 Vô lý vì x^2-2x+2 >0
TƯơng tự với m lớn hơn hoặc bằng 3......
Vậy để PT có nghiệm: m=0; 1
Để PT vô nghiệm: m>=2
Ko bik mik có giải đúng ko..
Trường hợp 1: m=0
Phương trình sẽ là \(-2\cdot\left(0-1\right)x+0-3=0\)
=>2x-3=0
hay x=3/2
=>Phương trình có đúng 1 nghiệm
Trường hợp 2: m<>0
\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)
\(=4m^2-8m+4-4m^2+12m=4m+4\)
a: Để phương trình có nghiệm kép thì 4m+4=0
hay m=-1
c: Để phương trình vô nghiệm thì 4m+4<0
hay m<-1
d: Để phương trình có nghiệm thì 4m+4>=0
hay m>=-1