K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của BD

Do đó: ME là đường trung bình

=>ME//CD

hay ID//ME

Xét ΔAME có 

D là trung điểm của AE

DI//EM

Do đó:I là trung điểm của AM

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Lời giải:

Xét tam giác $ABM$ có $E,I,D$ thẳng hàng, áp dụng định lý Menelaus ta có:

\(\frac{AE}{EB}.\frac{IB}{IM}.\frac{DM}{DA}=1\Rightarrow \frac{AE}{EB}.=\frac{DA}{DM}\) (do \(IB=IM\) )

Xét tam giác $ACM$ và $F,K, D$ thẳng hàng, áp dụng định lý Menelaus có:

\(\frac{AF}{CF}.\frac{KC}{KM}.\frac{DM}{DA}=1\Rightarrow \frac{AF}{CF}=\frac{DA}{DM}\) (do $KC=KM$)

Do đó: \(\frac{AE}{EB}=\frac{AF}{CF}\Rightarrow EF\parallel BC(1)\) theo định lý Ta-let đảo

Mặt khác xét tam giác $MBC$ có \(\frac{MI}{IB}=\frac{MK}{KC}=1\Rightarrow IK\parallel BC(2)\) theo định lý Talet đảo

Từ \((1);(2)\Rightarrow EF\parallel IK\) (đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Hình vẽ:

Violympic toán 9

a: Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DC

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//BD và \(ME=\dfrac{BD}{2}\)

Xét ΔMAE có

D là trung điểm của AE

DI//ME

Do đó: I là trung điểm của AM

hay IA=IM

b: Xét ΔAME có 

I là trung điểm của AM

D là trung điểm của AE

Do đó: ID là đường trung bình của ΔAME

Suy ra: \(ID=\dfrac{ME}{2}\)

\(\Leftrightarrow BD=4\cdot ID\)

28 tháng 3 2016

ai lam jum minh ko jup voi

dang can gap lam nha

28 tháng 3 2016

lên goole mà tra

30 tháng 11 2014

DE là đg đx nên DE vuông góc với AB nên E là góc vuông

df là đg đx nên DF vuông góc với AC nên F là góc vuông.

tứ giác AEDM có E,A,F là góc vuông nên là HCN.

.làm vội k bít đúng k