Tìm x
a)5x - 24= 1 + 50
b)4 + 36 : 9 + x=54
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://hoc24.vn/cau-hoi/a-5x-2x-62-50b-5x-x-150-2-3c-6x-x-511-59-31d-5x-3x-36-334-124x-2x-68-219-216.2785429565572
a: \(\Leftrightarrow7x=35\)
hay x=5
b: \(\Leftrightarrow6x=78\)
hay x=13
a: ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
b: ta có: \(\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)
\(\Leftrightarrow x-1-4x^2+4x+4\left(3x^2+9x+2x+6\right)=38\)
\(\Leftrightarrow-4x^2+5x-1+12x^2+44x+24-38=0\)
\(\Leftrightarrow8x^2+49x-15=0\)
\(\text{Δ}=49^2-4\cdot8\cdot\left(-15\right)=2881\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-49-\sqrt{2881}}{16}\\x_2=\dfrac{-49+\sqrt{2881}}{16}\end{matrix}\right.\)
1: \(\Leftrightarrow x=UCLN\left(24;36;150\right)=6\)
2: \(\Leftrightarrow x\in\left\{24;48;72;...\right\}\)
mà 16<=x<=50
nên \(x\in\left\{24;48\right\}\)
3: \(\Leftrightarrow x\inƯ\left(6\right)\)
mà x>-10
nên \(x\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
4: \(\Leftrightarrow x\in BC\left(4;5;8\right)\)
\(\Leftrightarrow x\in\left\{...;-40;0;40;80;120;160;200;...\right\}\)
mà -20<x<180
nên \(x\in\left\{0;40;80;120;160\right\}\)
a: Ta có: \(\sqrt{\sqrt{x}+3}=4\)
\(\Leftrightarrow\sqrt{x}+3=16\)
\(\Leftrightarrow\sqrt{x}=13\)
hay x=169
b: Ta có: \(\sqrt{x+3}=\sqrt{1-5x}\)
\(\Leftrightarrow x+3=1-5x\)
\(\Leftrightarrow6x=-2\)
hay \(x=-\dfrac{1}{3}\left(nhận\right)\)
a) \(\sqrt{3+\sqrt{x}}=4\left(đk:x\ge0\right)\)
\(\Leftrightarrow3+\sqrt{x}=16\Leftrightarrow\sqrt{x}=13\Leftrightarrow x=169\left(tm\right)\)
b) \(\sqrt{x+3}=\sqrt{1-5x}\left(đk:\dfrac{1}{5}\ge x\ge-3\right)\)
\(\Leftrightarrow x+3=1-5x\Leftrightarrow6x=-2\Leftrightarrow x=-\dfrac{1}{3}\left(ktm\right)\)
Vậy \(S=\varnothing\)
c) \(\sqrt{x^2+6x+9}=3x-1\left(đk:x\ge\dfrac{1}{3}\right)\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
\(\Leftrightarrow x+3=3x-1\Leftrightarrow2x=4\Leftrightarrow x=2\left(tm\right)\)
a, \(\left(2x-1\right)\left(x+3\right)-2x^2+5x=7\)
\(\Leftrightarrow2x^2+6x-x-3-2x^2+5x=7\)
\(\Leftrightarrow2x^2+5x-3-2x^2+5x=7\)
\(\Leftrightarrow10x-10=0\Leftrightarrow x=1\)
b, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-4\right)\left(x+4\right)=54\)
\(\Leftrightarrow\left(x^3+27\right)-x\left(x^2-16\right)=54\)
\(\Leftrightarrow x^3+27-x^3+16x=54\)
\(\Leftrightarrow-27+16x=0\Leftrightarrow x=\frac{27}{16}\)
a: Ta có: \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{23}{7}\end{matrix}\right.\)
c: Ta có: \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-5\right)\cdot\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
b.
PT $\Leftrightarrow (5x^2-2x+10)^2-(3x^2+10x-8)^2=0$
$\Leftrightarrow (5x^2-2x+10-3x^2-10x+8)(5x^2-2x+10+3x^2+10x-8)=0$
$\Leftrightarrow (2x^2-12x+18)(8x^2+8x+2)=0$
$\Leftrightarrow (x^2-6x+9)(4x^2+4x+1)=0$
$\Leftrightarrow (x-3)^2(2x+1)^2=0$
$\Leftrightarrow (x-3)(2x+1)=0$
$\Leftrightarrow x-3=0$ hoặc $2x+1=0$
$\Leftrightarrow x=3$ hoặc $x=-\frac{1}{2}$
d.
$x^2-2x=24$
$\Leftrightarrow x^2-2x-24=0$
$\Leftrightarrow (x+4)(x-6)=0$
$\Leftrightarrow x+4=0$ hoặc $x-6=0$
$\Leftrightarrow x=-4$ hoặc $x=6$
5x-24=51
=>5x=51+24=75
=>x= 75:5=15
vậy x= 15
4+36:9+x=54
=>4+4+x=54
=>x=54-4-4=46
vậy x=46
a) 5 . x - 24= 1 + 50
5 . x - 24 = 51
5 . x = 51 + 24
5 . x = 75
x = 75 : 5
x = 15
b) 4 + 36 : 9 + x = 54
36 : 9 + x = 54 - 4
36 : 9 + x = 50
4 + x = 50
x = 50 - 4
x = 46
#họctốt
&YOUTUBER&