Tam giác ABC có AB< AC. Gọi M là trung điểm của BC .So sánh 2 góc BAM và góc CAM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M I 1 2
Trên tia \(AM\) của tam giác \(ABC\) lấy điểm \(I\) sao cho \(AM=IM\)
Ta có: \(AM=IM\) (theo giả thiết)
góc \(M_1\) \(=\) góc \(M_2\) (đối đỉnh)
\(MC=MB\) (do \(M\) là trung điểm của \(BC\))
nên \(\Delta AMC=\Delta IMB\) \(\left(cgc\right)\)
suy ra góc \(MAC\) \(=\) góc \(MIB\) (hai góc tương ứng)
Do đó, \(BI=AC>AB\)
Khi đó, xét \(\Delta ABI\) có \(BI>AB\)
nên góc \(BAI\) \(>\) góc \(BIA\)
\(\Leftrightarrow\) góc \(BAM\) \(>\) góc \(MAC\)
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hbh
=>AB=CD
b: ABDC là hbh
=>AB//CD
AB=CD
AB<AC
=>CD<AC
=>góc CAD<góc CDA
=>góc CAD<góc BAD
Câu a : làm theo bài này do mk làm .
Câu hỏi của Cấn Ngọc anh - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Câu b : no bt
A B C M 1 2 1 2
a) Trên tia đối của tia AM lấy K sao cho AM=KM
Xét ∆AMC và ∆KMB ta có:
AM=KM (cách vẽ)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM=BM (M là trung điểm BC)
=> ∆AMC=∆KMB
=> \(\widehat{CAM}=\widehat{BKM,}\)BK = AC>AB
Khi đó trong ∆ABK có:
BK>AB => \(\widehat{BAK}>\widehat{BKA}\Rightarrow\widehat{BAM}>\widehat{CAM}\)
K B M C A 1 2
Trên tia AM lấy điểm K sao cho AM = KM
Xét hai tam giác \(\Delta AMC\)và \(\Delta KMB\), ta có :
AM = KM
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM = BM (vì M là trung điểm của BC)
Do đó : \(\Delta AMC=\Delta KMB\Rightarrow\widehat{CAM}=\widehat{BKM}\)
BK = AC > AB
Khi đó,trong \(\Delta ABK\)vì :
BK > AB => \(\widehat{BAK}>\widehat{BKA}\)=> \(\widehat{BAM}>\widehat{CAM}\).