K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

MA,MI là tiếp tuyến

nên MA=MI và OM là phân giác của góc AOI(1)

mà OA=OI

nên OM là trung trực của AI

=>OM vuông góc với AI tại H

Xét (O) có

NI,NB là tiếp tuyến

nên NI=NB và ON là phân giác của góc IOB(2)

mà OI=OB

nên ON là trung trực của IB

=>ON vuông góc IB tại K

Từ (1), (2) suy ra gócc MON=1/2*180=90 độ

Xét tứ giác OHIK có

góc OHI=góc OKI=góc HOK=90 độ

nên OHIK là hình chữ nhật

b: OH*OM=OI^2

OK*ON=OI^2

=>OH*OM=OK*ON

18 tháng 2 2022

giúp em với a cần gấp 

 

a: Xét (O) có 

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

DO đó; OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{DOC}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

hay ΔODC vuông tại O

b: Xét ΔODC vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

28 tháng 1 2018

Up up up

28 tháng 1 2018

Giúp em với!!!

a: Xét (O) có

DA,DC là tiếp tuyến

nên DA=DC và OD là phân giác của góc AOC(1)

mà OA=OC

nen OD là trung trực của AC

Xét (O) có

EC,EB là tiếp tuyến

nên EB=EC và OE là phân giác của góc COB(2)

mà OB=OC

nên OE là trung trực của BC

Từ (1), (2) suy ra góc DOE=1/2*180=90 độ

Xét tứ giác CHOK co

góc CHO=góc CKO=góc HOK=90 độ

nên CHOK là hình chữ nhật

b: OH*OD+OK*OE

=OC^2+OC^2

=2*OC^2