K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)

Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)

=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)

Lấy (2) trừ (1) theo vế ta có : 

2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)

15 tháng 5 2015

Ta có: \(\frac{1}{2}=1-\frac{1}{2}\);  \(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\)\(\frac{1}{8}=\frac{1}{4}-\frac{1}{8}\);  ...; \(\frac{1}{512}=\frac{1}{256}-\frac{1}{512}\)\(\frac{1}{1024}=\frac{1}{512}-\frac{1}{1024}\)

Vậy \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)

            \(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1024}\)

            \(=1+1-\frac{1}{1024}\)

            \(=2-\frac{1}{1024}=\frac{2047}{1024}\)

28 tháng 8 2017

bằng 2047/1024

10 tháng 5 2017

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)

BẤM ĐÚNG NHÉ

8 tháng 6 2017

1023/1024 nhé bạn

19 tháng 6 2019

\(2A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\Rightarrow2A-A=1-\frac{1}{1024}=\frac{1023}{1024}\)

19 tháng 6 2019

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)

\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)

\(2A-A=\left[1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right]-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right]\)

\(A=1-\frac{1}{2014}=\frac{2013}{2014}\)

2 tháng 4 2017

ta có: 1+1/2+2+1/4+...+9+1/512

        =(1+2+3+4+...+9)+(1/2+1/4+...+1/512)

       =45+(1/2+1/4+...+1/512)

gọi số hạng (1/2+1/4+...+1/512) là a ta được :

a=1/2+1/4+...+1/512

2a=1+1/2+1/4+1/8+...+1/256

2a-a=(1+1/2+1/4+...+1/256)-(1/2+1/4+...+1/512)

      =1-1/512

      =511/512

vậy kết quả của biểu thức đó là45+511/512

29 tháng 7 2017

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)

\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}+\frac{1}{2^{11}}\)

\(2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

\(A=2^{11}-2\)

10 tháng 6 2018

(1981 x 1982 - 990) : (1980 x 1982 + 992)

=(1980 x 1982+1982 -990) : (1980 x 1982 +992)

=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)

=1

15 tháng 8 2018

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)

\(=1-\frac{1}{1024}\)

\(=\frac{1023}{1024}\)

15 tháng 8 2018

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}.\)

Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)

<=> \(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}+\frac{1}{512}\)

<=> \(2A-A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{256}+\frac{1}{512}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{512}-\frac{1}{1024}\)

<=> \(A=1-\frac{1}{1024}\)

<=> \(A=\frac{1023}{1024}\)

30 tháng 3 2018

Ta có : 

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}\)

\(A=\frac{2^{10}-1}{2^{10}}\)

\(A=\frac{1024-1}{1024}\)

\(A=\frac{1023}{1024}\)

Vậy \(A=\frac{1023}{1024}\)

Chúc bạn học tốt ~ 

30 tháng 3 2018

Đặt tổng trên là A.

Ta có

A x 2 = 1+ 1/2+1/4+1/8+ 1/16+1/32+ 1/64+ 1/128 + 1/256 + 1/512

Ax2 - A = 1+ 1/2+1/4+1/8 +1/16 + 1/32 +1/64+ 1/128 + 1/256+ 1/512 - ( 1/2 + 1/4 +1/8+1/16+1/32+1/64 + 1/128+ 1/256 + 1/512+ 1/1024)

A = 1+ 1/2 +1/4+1/8+1/16+1/32+1/64+1/128+1/256 + 1/512 - 1/2-1/4-1/8-1/16-1/32-1/64-1/128-1/256-1/512- 1/1024

A = 1 - 1/ 1024 = 1023/1024

15 tháng 8 2017

ta có : A=1/2+1/4+..+1/1024

=> A=1/21+1/22+..+1/210

=> A.2=(1/21+1/22+..+1/210).2

=> A.2=1+1/21+1/22+..+1/29

=> 2A-A=(1+1/21+1/22+..+1/29)-(1/21+1/22+..+1/210)

=> A=1-1/210

15 tháng 8 2017

\(\frac{2174}{1024}\)

21 tháng 6 2018

\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+....+\frac{1}{256}-\frac{1}{512}\)

\(=\frac{1}{2}-\frac{1}{512}\)

\(=\frac{255}{512}\)

Vậy \(A=\frac{255}{512}\)

21 tháng 6 2018

A=14 +18 +116 +132 +164 +1128 +1256 +1512 

=12 −14 +14 −18 +....+1256 −1512 

=12 −1512 

=255512 

Vậy A=255512 

Phạm Long Khánh