K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 2 2020

Với mọi số chính phương lẻ ta luôn dễ dàng chứng minh nó chia 8 dư 1

Thật vậy, \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\)

Do \(k\left(k+1\right)\) là tích 2 số nguyên liên tiếp \(\Rightarrow4k\left(k+1\right)⋮8\)

\(\Rightarrow4k\left(k+1\right)+1\) chia 8 dư 1

Do \(p>2\Rightarrow p\) lẻ \(\Rightarrow p=2n+1\)

\(\Rightarrow4p+1=4\left(2n+1\right)+1=8n+5\) chia 8 dư 5 nên không thể là số chính phương lẻ (đpcm)

7 tháng 10 2017

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

22 tháng 1 2023

chứng minh kiểu j vậy?

sai bét

 

3 tháng 11 2015

Gọi hai số nguyên tố cần tìm là a và b    Ta có quy tắc : số chẵn + số lẻ =số lẻ     Theo đề bài cho tổng a và b = 601 (số lẻ ).      Nên ta có a là số chẵn mà là số nguyên tố . Vậy a là hai vì hai là số nguyên tố chẵn duy nhất              Từ các lập luận trên ta có biểu thức : a+b=601.                                                                                                                         2+b=601.            b=601-2.         b=599.                 Vậy b =599.hai số nguyên tố cần tìm là 2 và 599 ( bài 1)

 

 

1 tháng 11 2016

con ngueyn tran ban  mai lam ngu vai

31 tháng 3 2016

Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.

17 tháng 9 2015

+) Nếu n chẵn => n = 2k (k \(\in\) N) => 2= 22k = 4k 

=> 2+ 3 = 4+ 3 , chia cho 4 dư 3 => 2+ 3 không là số chính phương (Số chính phương chia cho 4 chỉ dư 0 hoặc 1)

+) Nếu n lẻ => n = 2k + 1 (k \(\in\) N* vì n > 1) => 2+ 3 = 22k+1 + 3 = 2.4+ 3 , chia cho 4 dư 3 => 2+ 3 không là số chính phương

Vậy Với mọi n > 1 thì 2+ 3 không là số chính phương

17 tháng 9 2015

Ngọc Vĩ= sư tử xổng chuồng

17 tháng 9 2015

chưa hok dạng này lần nào       

29 tháng 1 2016

2^n+3 ko phải là số chính phương vì 1 số chính phương chia 2 ko dư 3