Cho x,y,z>0 va x+y+z \(\le\)3.Tim GTNN cua P=\(x^2+y^2+z^2+\frac{20}{x+y+z}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DD
0
29 tháng 1 2020
Áp dụng BĐT Cauchy - Schwarz dạng phân thức, ta có :
\(P=\)\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2x+2y+2z}=\frac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)
Dấu " = ' xảy ra \(\Leftrightarrow\)\(x=y=z\)
Vậy : \(MinP=1\)\(\Leftrightarrow x=y=z\)
NV
Nguyễn Việt Lâm
Giáo viên
26 tháng 2 2020
Số hạng cuối là \(\frac{20}{\sqrt{y+2}}\) hay \(\frac{20}{\sqrt{y+z}}\) vậy bạn?
AK
0