trên các cạnh AB và AC của tam giác ABC lấy tương ứng hai điểm M và N sao cho AM=1/3AB, AN=1/3AC. Gọi D là giao điểm của BN và CM. Qua A kẻ AH vuông góc với BN và Ck vuông góc với BN. a) so sánh AH vs CK. b) cmr Sabc=1/2 Sbcd. c) Biết Sabc=24cm vuông. Tính Samdn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AM/AB=AN/AC=1/3=>MN//BC =>MN/BC=AM/AB=AN/AC=1/3
MN//bc=>NM/BC=MD/DC=ND/BD=1/3
Ta có:SBNC=2SABN(Vì chung đường cao hạ từ B->AC;Đáy NC=2AN)
Mà SBNC+SABN=SABC=>SBNC=2/3SABC(1)
Lại có Sbdc=3Scnd (vì chung đương cao CL và ND=1/3BD hay BD=3ND)
Mà SBCD+SNCD =SBNC=>SBCD=3/4 SBNC(2)
Từ 1 và 2 =>SBDC=1/2SABC
tick đúng tớ nhé!
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHElà hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
b: HE//AB
=>HN//AB
mà góc NAB=góc HBA
nên NHBA là hình thang cân
=>góc ANB=góc AHB=90 độ
=>BN vuông góc với AM
=>BN//DE
c: Xét ΔMAB có AH,BN.MK là các đường cao
nên AH,BN,MK đồng quy