cho tam giác ABC cân tại A, có AB = 5cm, BC = 6cm . Kẻ AD vuông góc với BC
a) tìm các tam giác bằng nhau trong hình
b) tính độ dài AD
AI LÀM TRC THÌ MÌNH SẼ TICK CHO NG ĐÓ NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AH\perp BC\)
=> AH là đường cao của \(\Delta ABC\)
\(\Delta ABC\) cân tại A có AH là đường cao cũng là đường trung tuyến
\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Xét \(\Delta HAB\) vuông tại H (AH là đường cao) có:
\(AB^2=AH^2+BH^2\left(Pytago\right)\\ \Rightarrow AH^2=AB^2-BH^2\\ \Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
a, vì tam giác ABC cân => góc B = góc C
xét tam giác ABH và ACH ta có
AB =AC
góc B = góc C
ah là cạnh chung
=> tam giác ABH = ACH
=> HB = HC ( hai cạnh tương ứng)
b, HB =HC
mà HB + HC = 8cm => HB = HC = 8: 2 = 4 cm
xét tam giác ABH vuông tại h có
AH mũ 2 + BH mũ 2 = ab mũ 2
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ hai + 16 = 25
AH mũ 2 = 25 -16
=> AH mũ 2 = 9
=> AH = cân bậc hai của 9 = 3
k mình nha và kết bạn với mình nữa nhá