Tính tổng đại số sau :
S= 1 - 2 + 2^2 - 2^3 +......+ 2^1000.
Mọi người ơi giúp !!!!! :v
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 - 2 + 22 - 23 + ... + 21000 ( 1 )
2S = 2 - 22 + 23 - 24 + ... + 21001 ( 2 )
Cộng từng vế hai đẳng thức ( 1 ) và ( 2 ) ta được :
S + 2S = 1 + [ ( -2 ) + 2 ] + [ 22 + ( -2 )2 ] + ... + [ 21000 + ( -2 )1000 ] + 21001
3S = 1 + 0 + 0 + ... + 0 + 21001
3S = 1 + 21001
S = \(\frac{1+2^{1001}}{3}\)
2s=2+2^2+...................+2^1001
2s-s=(2+2^2+.....+2^1001)-(1+2+......+2^1000)
s=2^1001-1
S = 1 + 2 + 2² + 2³ + ... + 2²⁰¹⁷
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹⁸
S = 2S - S
= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹⁸) - (1 + 2 + 2² + 2³ + ... + 2²⁰¹⁷)
= 2²⁰¹⁸ - 1
`S=1+2+2^2+2^3+...+2^2017`
`2S=2+2^2+2^3+2^4+...+2^2018`
`2S-S=(2+2^2+2^3+2^4+...+2^2018)-(1+2+2^2+2^3+...+2^2017)`
`S=2^2018 -1`
Bài 1 : Gọi số thứ nhất cần tìm là x,số thứ hai cần tìm là y,số thứ ba cần tìm là z. Theo đề bài ta có :
x2 + y2 + z2 = 8125
Mà \(y=\frac{2}{5}x\)=> \(5y=2x\)=> \(\frac{x}{5}=\frac{y}{2}\)(1)
\(y=\frac{3}{4}z\)=> 4y = 3z => \(\frac{y}{3}=\frac{z}{4}\)(2)
Từ (1) và (2) => \(\frac{x}{5}=\frac{y}{2};\frac{y}{3}=\frac{z}{4}\)
+) \(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{6}\)
+) \(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{6}=\frac{z}{8}\)
=> \(\frac{x}{15}=\frac{y}{6}=\frac{z}{8}\)
=> \(\frac{x^2}{15^2}=\frac{y^2}{6^2}=\frac{z^2}{8^2}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{15^2}=\frac{y^2}{6^2}=\frac{z^2}{8^2}=\frac{x^2+y^2+z^2}{15^2+6^2+8^2}=\frac{8125}{325}=25=5^2\)
=> x2 = 52 . 152 = 752 => x = \(\pm\)75
y2 = 52 . 62 = 302 => y = \(\pm\)30
z2 = 52 . 82 = 402 => z = \(\pm\)40
Bài 2 tự làm
phần đầu mình làm phần sau bạn tự làm nha
đầu tiên tính số số hạng lấy
(1000-1):1+1=1000(số hạng)
công thức : (số đầu - số cuối) chia khoảng cách +1
tiếp theo tính tổng:
(1000+1)x1000:2=500500
công thức: (số đầu + số cuối) nhân khoảng cách chia 2
S = 1 + 2 + 3 + 4 +.....+ 298 + 299
Dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là:
( 299 - 1): 1 + 1 = 299
Áp dụng công thức tính tổng của dãy số cách đều ta có tổng S:
S = ( 299 + 1) \(\times\) 299 : 2
S = 44850