K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 1 2020

Lời giải:

Áp dụng BĐT Cô-si cho các số dương ta có:

\(x+\frac{1}{(x-y).y}=(x-y)+y+\frac{1}{(x-y).y}\geq 3\sqrt[3]{(x-y).y.\frac{1}{(x-y).y}}=3\)

Ta có đpcm.

Dấu "=" xảy ra khi \(x-y=y=\frac{1}{(x-y).y}\) hay $x=2; y=1$

14 tháng 8 2016

Áp dụng BĐT Cô si ta có:

\(x+y\ge2\sqrt{xy}=2\cdot\frac{1}{\sqrt{z}};y+z\ge2\sqrt{yz}=2\cdot\frac{1}{\sqrt{x}};z+x\ge2\sqrt{xz}=2\cdot\frac{1}{\sqrt{y}}.\)( vì xyz=1)

=> P\(\ge\)\(\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}\)\(\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\hept{\begin{cases}a=y\sqrt{y}+2z\sqrt{z}\\b=z\sqrt{z}+2x\sqrt{x}\\c=x\sqrt{x}+2y\sqrt{y}\end{cases}\left(a;b;c\ge0\right)}\)<=> \(\hept{\begin{cases}4a+b=2c+9z\sqrt{z}\\4b+c=2a+9x\sqrt{x}\\4c+a=2b+9y\sqrt{y}\end{cases}}\)

<=> \(\hept{\begin{cases}z\sqrt{z}=\frac{4a+b-2c}{9}\\x\sqrt{x}=\frac{4b+c-2a}{9}\\y\sqrt{y}=\frac{4c+a-2b}{9}\end{cases}}\)

Do đó:

\(\ge\)\(\frac{2}{9}\cdot\left(\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}+\frac{4c+a-2b}{b}\right)\)

<=> P \(\ge\)\(\frac{2}{9}\left(4\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)+\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)-6\right)\)

<=> P \(\ge\frac{2}{9}\cdot\left(4\cdot3\cdot\sqrt[3]{\frac{a}{c}\cdot\frac{b}{a}\cdot\frac{c}{b}}+3\cdot\sqrt[3]{\frac{b}{c}\cdot\frac{c}{a}\cdot\frac{a}{b}}-6\right)\)( Áp dụng BĐT Cô si cho 3 số ko âm)

<=> P \(\ge\frac{2}{9}\left(12+3-6\right)=2\)( đpcm)

Dấu = khi x=y=z=1.

5 tháng 11 2019

Áp dụng BĐT cô si\(\frac{1}{\left(x-1\right)^3}+1+1\ge\sqrt[3]{\frac{1}{\left(x-1\right)^3}\cdot1\cdot1}=\frac{1}{x-1}\)

\(\Rightarrow\frac{1}{\left(x-1\right)^3}\ge\frac{3}{x-1}-2\left(1\right)\)

\(\left(\frac{x-1}{y}\right)^3+1+1\ge3\sqrt[3]{\left(\frac{x-1}{y}\right)^3\cdot1\cdot1}=\frac{3x-3}{y}\)

\(\Rightarrow\left(\frac{x-1}{y}\right)^3\ge\frac{3x-3}{y}-2\left(2\right)\)

\(\frac{1}{y^3}+1+1\ge\sqrt[3]{\frac{1}{y^3}\cdot1\cdot1}=\frac{3}{y}\Rightarrow\frac{1}{y^3}=\frac{3}{y}-2\left(3\right)\)

Cộng vế theo vế của \(\left(1\right);\left(2\right);\left(3\right)\) ta có:

\(VT\ge\frac{3}{x-1}-6+\frac{3x-3}{y}+\frac{3}{y}\)

\(=\frac{3-6x+6}{x-1}+\frac{3x}{y}\)

\(=3\left(\frac{3-2x}{x-1}+\frac{x}{y}\right)\)

4 tháng 12 2017

Ta có:

\(\dfrac{1}{\left(x-1\right)^3}+1+1+\left(\dfrac{x-1}{y}\right)^3+1+1+\dfrac{1}{y^3}+1+1\)

\(\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{\left(x-1\right)^3}+\left(\dfrac{x-1}{y}\right)^3+\dfrac{1}{y^3}\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}-2\right)\)

\(=3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)

6 tháng 11 2017

Áp dụng BĐT AM-GM ta có:

\(x+y+z\ge3\sqrt[3]{xyz}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)

Nhân theo vế 2 BĐT trên ta có:

\(VT\ge3^2\cdot\sqrt[3]{xyz\cdot\frac{1}{xyz}}=9=VP\)

Xảy ra khi \(a=b=c\)

9 tháng 6 2016

Đặt A=.....
Dễ dàng biến đổi \(A=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Có :\(\frac{x^2}{y-1}+4\left(y-1\right)\ge4x\)và \(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Khi đó :\(A\ge4x+4y-4\left(x-1\right)-4\left(y-1\right)=8\)
Dấu = xảy ra \(\Leftrightarrow x=y=2\)
Phần dấu = tớ làm hơi tắt. bạn nên tb rõ nhé 

9 tháng 6 2016

\(A=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^3-x^2+y^3-y^2}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}.\)

Áp dụng BĐT Côsy Schwarz \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}\ge\frac{\left(a_1+a_2\right)^2}{b_1+b_2}\)(Bạn có thể chứng minh được theo Bunhiacopxki - hoặc xem về BĐT Côsy Schwarz trên mạng)

cho các số dương a1=x;a2=y;b2=x-1;b2=y-1. Ta có:

\(A=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}=\frac{\left(x+y\right)^2-4+4}{x+y-2}=x+y+2+\frac{4}{x+y-2}=\)

\(=4+\left\{\left(x+y-2\right)+\frac{4}{x+y-2}\right\}\)

Vì x+y-2 >0. Áp dụng BĐT Cô sy cho 2 số \(\left(x+y-2\right);\frac{4}{x+y-2}\)

\(A\ge4+\left\{\left(x+y-2\right)+\frac{4}{x+y-2}\right\}\ge4+2\sqrt{\left(x+y-2\right)\cdot\frac{4}{x+y-2}}=4+2\sqrt{4}=8\)

Vậy A>=8. Dấu bằng xảy ra khi x=y=2 (ĐPCM).

12 tháng 12 2017

Áp dụng BĐT Cauchy, ta có:

 \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)

\(\Rightarrow VT\ge\frac{2}{xy}+\frac{1}{x^2+y^2}\)

\(\Leftrightarrow VT\ge\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{3}{2xy}\)

\(\Rightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{3}{\frac{\left(x+y\right)^2}{2}}\)

\(\Leftrightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{6}{\left(x+y\right)^2}=\frac{10}{\left(x+y\right)^2}\)

Dấu = xảy ra khi \(x=y>0\)

Vậy \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}\ge\frac{10}{\left(x+y\right)^2}\) với \(\forall x;y>0\)

28 tháng 9 2018

\(xy+yz+zx=xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì

\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)

Ta co:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)

Từ đây ta co:

\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)