TÍNH SAO CHO NHANH NHẤT
1023/2+2^2+....+2^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chỉ gửi 1 bài thôi chứ nhiều quá làm mỏi tay lắm
Làm bài 1 trước
\(4\cdot(-5)^2+2\cdot(-5)-20\)
\(=4\cdot25+2\cdot(-5)-20\)
\(=100+(-10)-20=100-30=70\)
\(35\cdot(14-10)-14\cdot(35-10)\)
\(=35\cdot14-35\cdot10-14\cdot35-14\cdot10\)
\(=35\cdot14-14\cdot35-35\cdot10-14\cdot10\)
\(=35\cdot10-14\cdot10=(35-14)\cdot10=210\)
\(3\cdot(-5)^2+2\cdot(-5)-20\)
Tương tự như ở câu trên
\(34\cdot(15-10)-15\cdot(34-10)\)
Tương tự như câu thứ 2
Câu cuối tự làm
\(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}}{\dfrac{2}{2}+\dfrac{2}{2^2}+...+\dfrac{2}{2^{10}}}=\dfrac{\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}}{2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)}=\dfrac{1}{2}\)
A = \(\dfrac{\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{10}}}{\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{10}}}\)
= \(\dfrac{\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}}{2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)}\)
= \(\dfrac{1}{2}\)
Ta có: \(2^{10}=1024\)
Đặt \(A=2+2^2+...+2^{10}\)và \(B=\frac{1023}{2+2^2+...+2^{10}}\)
\(2A=2^2+2^3+...+2^{11}\)
\(A=2^{11}-2\)
Thay A vào B, ta có: \(B=\frac{2^{10}-1}{2^{11}-2}=\frac{2^{10}-1}{2\left(2^{10}-1\right)}=\frac{1}{2}\)
Vậy B= 1/2