Cho a,b là hai số dương thoả mãn \(\sqrt{ab}\)=\(\frac{a+b}{a-b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow VT\ge3\sqrt[6]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)}}\)
Chứng minh : \(3\sqrt[6]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)}}\ge3\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left(c+ab\right)\left(a+bc\right)\le\frac{\left(c+a+ab+bc\right)^2}{4}\)
\(=\frac{\left[b\left(a+c\right)+c+a\right]^2}{4}=\frac{\left(b+1\right)^2\left(c+a\right)^2}{4}\)
Thiết lập tương tự và thu lại ta có :
\(\Rightarrow\left(c+ab\right)^2\left(a+bc\right)^2\left(b+ac\right)^2\)
\(\le\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a^2\right)\left(b+1\right)^2\left(a+1\right)^2\left(c+1\right)^2}{64}\)
\(\Rightarrow64\left(c+ab\right)^2\left(a+bc\right)^2\left(b+ac\right)^2\)
\(\le\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\left(b+1\right)^2\left(c+1\right)^2\left(a+1\right)^2\)
\(\Leftrightarrow8\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)\)
\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(b+1\right)\left(c+1\right)\left(a+1\right)\)
Cần chứng minh :
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le8\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\le\left(\frac{3+3}{3}\right)^3=8\left(đpcm\right)\)
Chúc bạn học tốt !!!!
ta có:
\(c+ab=c.1+ab=c\left(a+b+c\right)+ab=ca+cb+c^2+ab=\left(c+a\right)\left(c+b\right)\)
tương tự như vậy thì \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)
áp dụng bđt cô si ta có:
\(\frac{a}{a+c}+\frac{b}{b+c}\ge2\sqrt{\frac{ab}{\left(c+a\right)\left(b+c\right)}};\frac{b}{a+b}+\frac{c}{c+a}\ge2\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}};\frac{a}{a+b}+\frac{c}{b+c}\ge2\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\left(Q.E.D\right)\)
Lời giải:
Áp dụng BĐT AM-GM:
$\text{VT}=\sqrt{ab+c(a+b+c)}+\sqrt{bc+a(a+b+c)}+\sqrt{ca+b(a+b+c)}$
$=\sqrt{(c+a)(c+b)}+\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}$
$\leq \frac{c+a+c+b}{2}+\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}$
$=2(a+b+c)=2$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
\(\left(\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}\right)^2\\ =\dfrac{a+\sqrt{a^2-b}+a-\sqrt{a^2-b}}{2}+2\sqrt{\dfrac{\left(a+\sqrt{a^2-b}\right)\left(a-\sqrt{a^2-b}\right)}{4}}\\ =\dfrac{2a}{2}+2\sqrt{\dfrac{a^2-a^2+b}{4}}\\ =a+2\sqrt{\dfrac{b}{4}}=a+\dfrac{2\sqrt{b}}{2}=a+\sqrt{b}\\ \Rightarrow\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}=\sqrt{a+\sqrt{b}}\)
\(VT=\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{1}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{c}}}\right)\le\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{\sqrt{a}+\sqrt{b}+2\sqrt{c}}{16}\right)=\frac{1}{\sqrt{abc}}\)
Dấu "=" xay ra khi \(a=b=c=\frac{16}{9}\)