K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

Để phương trình có nghiệm

\(\Delta'=\left(-m\right)^2-1.\left(m^2-\dfrac{1}{2}\right)\ge0\Leftrightarrow\dfrac{1}{2}\ge0\) ( luôn đúng)

Áp dụng vi.et có

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-\dfrac{1}{2}\end{matrix}\right.\)

Theo bài ra ta có

\(x_1^2+x_2^2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=9\)

\(\Leftrightarrow\left(2m\right)^2-2\left(m^2-\dfrac{1}{2}\right)=9\)

\(\Leftrightarrow4m^2-2m^2+1=9\)

\(\Leftrightarrow2m^2=8\Leftrightarrow m^2=4\Leftrightarrow m=\pm2\)

 

1 tháng 6 2021

Để pt có nghiệm <=>  \(\Delta'\ge0\Leftrightarrow\left(-m\right)^2-1\left(m^2-\dfrac{1}{2}\right)\ge0\)

\(\Leftrightarrow m^2-m^2+\dfrac{1}{2}\ge0\Leftrightarrow\dfrac{1}{2}\ge0\) (Đúng)

Vậy pt luôn có 2 nghiệm x1,x2

Theo hệ thức vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-\dfrac{1}{2}\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=3^2=9\)

<=>\(\left(x_1+x_2\right)^2-2x_1x_2=9\)

<=>(2m)2-2(m2-1/2)=9

<=>4m2-2m2+1=9

<=>2m2=8<=>m2=4<=>\(m=\pm2\)

11 tháng 3 2022

Bài 1:

a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\ \Leftrightarrow x^2+1+7=0\\ \Leftrightarrow x^2+8=0\left(vô.lí\right)\)

Thay m=3 vào (1) ta có:

\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)

b, Thay x=4 vào (1) ta có:

\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)

c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)

\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)

\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)

11 tháng 3 2022

Bài 2:

a,Thay m=-2 vào (1) ta có:

\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)

\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)

\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)

\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)

14 tháng 3 2022

\(\Delta'=16-m\)Để pt có 2 nghiệm pb x1 ; x2 khi 

\(\Delta'>0\Leftrightarrow16-m>0\Leftrightarrow m< 16\)

Theo Vi et \(\hept{\begin{cases}x_1+x_2=8\left(1\right)\\x_1x_2=m\left(2\right)\end{cases}}\)

Ta có \(x_1-x_2=2\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=10\\x_2=x_1-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\)

Thay vào (2) ta được \(m=5.3=15\)

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

a: Khi m=4 thì phương trình trở thành \(x^2-4x+3=0\)

=>(x-3)*(x-1)=0

=>x=3 hoặc x=1

b: \(x_1+x_2=m\)

\(x_1x_2=m-1\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)=m^2-2m+2\)

\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\)

\(=\left(m^2-2m+2\right)^2-2\cdot\left(m-1\right)^2\)

\(=m^4+4m^2+4-4m^3+4m^2-8m-2m^2+4m-2\)

\(=m^4-4m^3+2m^2-4m+2\)

12 tháng 8 2023

a) Khi m = 0 thì phương trình trở thành:

\(x^2+2\left(0-2\right)x-0^2=0\)

\(\Leftrightarrow x^2+2\cdot-2x-0=0\)

\(\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b) Ta có: 

\(\left|x_1\right|-\left|x_2\right|=6\)

\(\Leftrightarrow x^2_1+x_2^2-2\left|x_1x_2\right|=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)

Mà: \(x_1+x_2=-2\left(m-2\right)=4-2m\)

\(x_1x_2=-m^2\)

\(\Leftrightarrow\left(4-2m\right)^2-2\cdot-m^2-2\cdot m^2=36\)

\(\Leftrightarrow16-16m+4m^2+2m^2-2m^2=36\)

\(\Leftrightarrow\left(4-2m\right)^2=6^2\)

\(\Leftrightarrow\left[{}\begin{matrix}4-2m=6\\4-2m=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2m=-2\\2m=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=5\end{matrix}\right.\)

8 tháng 3 2018

a, Khi m = 0 thì : 

pt <=> x^2+2x-3 = 0 

<=> (x-1).(x+3) = 0

<=> x-1=0 hoặc x+3=0

<=> x=1 hoặc x=-3

Tk mk nha