K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2020

sory mình học lớp 5

17 tháng 10 2018

\(a)\)\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x-3}}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\frac{3\sqrt{x}+3}{\sqrt{x}+3}.\frac{\sqrt{x}-3}{\sqrt{x+1}}\)

\(R=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)

\(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

\(b)\) Ta có : \(R< -1\)

\(\Leftrightarrow\)\(\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}< -1\)

\(\Leftrightarrow\)\(\frac{\sqrt{x}-3}{\sqrt{x}+3}< \frac{-1}{3}\)

\(\Leftrightarrow\)\(3\sqrt{x}-9< -\sqrt{x}-3\)

\(\Leftrightarrow\)\(4\sqrt{x}< 6\)

\(\Leftrightarrow\)\(\sqrt{x}< \frac{3}{2}\)

\(\Leftrightarrow\)\(x< \frac{9}{4}\)

Chúc bạn học tốt ~ 

18 tháng 6 2017

hsg bình thuận 2015

\(C=\left(\frac{x}{x+3\sqrt{x}}+\frac{1}{\sqrt{x}+3}\right):\left(1-\frac{2}{\sqrt{x}}+\frac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\frac{1}{\sqrt{x}+3}\right):\left(1-\frac{2}{\sqrt{x}}+\frac{6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{x+1.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\frac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}=1\)

5 tháng 8 2017

Điều kiện : \(x\ge0;x\ne4;x\ne9\)

\(A=\left(\frac{1}{1+\sqrt{x}}\right):\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{x-9-\left(x-4\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\left[\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(A=\frac{1}{1+\sqrt{x}}:\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{1+\sqrt{x}}\)

20 tháng 9 2019

A=(x​+x​+yyxy​​):(xy​+yx​+xy​−xy​−xyx+y​)

=\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{x\left(\sqrt{xy}-x\right)\sqrt{xy}+y\left(\sqrt{xy}+y\right)\sqrt{xy}-\left(x+y\right)\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}{\sqrt{xy}\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}=x​+yx+xy​+yxy​​:xy​(xy​+y)(xy​−x)x(xy​−x)xy​+y(xy​+y)xy​−(x+y)(xy​+y)(xy​−x)​

=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2y-x^2\sqrt{xy}+xy^2+y^2\sqrt{xy}-y^2\sqrt{xy}+x^2\sqrt{xy}}{xy^2-x^2y}=x​+yx+y​:xy2−x2yx2yx2xy​+xy2+y2xy​−y2xy​+x2xy​​

=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy^2-x^2y}{xy^2+x^2y}=x​+yx+y​.xy2+x2yxy2−x2y

=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}{xy\left(x+y\right)}=x​+yx+y​.xy(x+y)xy(y​−x​)(x​+y​)​

=\sqrt{y}-\sqrt{x}=y​−x