Cho S= 1+ 5^2 + 5^4 + 5^6 + .... + 5^2020 . Chứng minh rằng S chia hết cho 313
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\\ S=\left(1+5^2+5^4+5^6\right)+...+5^{2014}\left(1+5^2+5^4+5^6\right)\\ S=\left(1+5^2+5^4+5^6\right)\left(1+...+5^{2014}\right)\\ S=16276\left(1+...+5^{2014}\right)⋮313\left(16276⋮313\right)\)
\(S=5^2+5^4+5^6+.....+5^{2020}\)
Biết rằng mỗi số mũ của tổng các lũy thừa là số chẵn cách nhau 3 đơn vị
\(S=5^2+2^1-5^1\)
\(S=7^3-5^1\)
\(S=5^2:1^1\)
\(S=4^1\)
S=(6+51+52+53+.........52020)x20
S=20x(51+52)+20x(53+54)+...........20x(52019+52020)+20x6
S=20x30+20x(53+54)+20x6+.........+20x(52019+52020)
S=600+120+20x(53+54)...........+20x(52019+52020)
Ta có:600+120+20x(53+54)+.........+20x(52019+52020):hết cho 120
Vì 600:hết cho 120;120:hết cho 120;20x(53+54)+.............+20x(52019+52020):hết cho 120
Nên S : hết cho 120
\(S=5+5^2+5^3+5^4+...+5^{2004}\)
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)
\(S=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)
\(S=5.6+5^3.6+...+5^{2003}.6\)
\(S=6\left(5+5^3+...+5^{2003}\right)\) chia hết cho 6
S=5+52+53+54+55+...+52004
S=(5+54)+(52+55)+(53+56)+...+(52000+52004)
S=5x126+52x126+53x126+...+52000x126
⇒S chia hết cho 126
S=5+52+53+54+55+...+52004
có 65=13*5 mà tổng S chia hết cho 5 nha nên Cm S chia hết cho 13
tổng S có 2004 số số hạng được tách thành 2 phần: S=S1+S2
Với S1=5+53=130=65*2 nên S1 chia hết cho 65
S2=52+53+54+55+...+52004
(có 2002 số số hạng) mà 2002 chia hết cho 13 nên S2 chia hết cho 65
Vậy S chia hết cho 65
Answer:
\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\)
\(=\left(1+5^2+5^4+5^6\right)+...+5^{2014}+\left(1+5^2+5^4+5^6\right)\)
\(=\left(1+5^2+5^4+5^6\right).\left(1+...+5^{2014}\right)\)
\(=16276.\left(1+5^2+...+5^{2014}\right)⋮313\)
Mà ta có: \(S=16276⋮313\)
Vậy \(S⋮313\)