Cho a = 2^k +1( k là số tự nhiên ) là một số nguyên tố .Chứng minh k=0 hoặc k=2^n ( n là số tự nhiên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: p là số nguyên tố lớn hơn 2
=>p không thể chia hết cho 4
=> p chia 4 có dư
Giả sử p=4k+2 (k thuộc N)
=>p=2(2k+1) chia hết cho 2
=>p không phải là số nguyên tố
Vậy p chia 4 dư 1 hoặc 3
Nên p chỉ viết được dưới dạng 4k+1 hoặc 4k+3 (k thuôc N)(đpcm)
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
a) \(\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\left(n+10\right)^2\)
\(\Leftrightarrow n^2+2n+1+n^2+4n+4+n^2+6n+9=n^2+20n+100\)
\(\Leftrightarrow2n^2-8n-86=0\)
\(\Leftrightarrow n^2-4n=43\)
Ta có: \(n^2-4n=n^2-n-3n=n\left(n-1\right)-3n\)
\(n\left(n-1\right)\)là tích hai số tự nhiên liên tiếp nên khi chia cho \(3\)dư \(0\)hoặc \(2\).
Suy ra \(n^2-4n\)chia cho \(3\)dư \(0\)hoặc \(2\).
Mà \(43\)chia cho \(3\)dư \(1\)
do đó phương trình đã cho không có nghiệm tự nhiên.
b) Ta có: \(n^2+h^2+b^2+k^2+n+h+b+k=\left(n^2+n\right)+\left(h^2+h\right)+\left(b^2+b\right)+\left(k^2+k\right)\)
\(=n\left(n+1\right)+h\left(h+1\right)+b\left(b+1\right)+k\left(k+1\right)\)chia hết cho \(2\).
mà \(n+h+b+k\)chia hết cho \(6\)nên chia hết cho \(2\)
suy ra \(n^2+h^2+b^2+k^2\)chia hết cho \(2\)suy ra không phải là số nguyên tố
(do \(n^2+h^2+b^2+k^2>2\)).
LOL GAMER (*-*)
đáng lẽ n = 0 mới được chớ