Cho hình thang ABCD(AB//CD).Một đường thẳng d song song với hai cạnh đáy cắt hai cạnh bên Ad,BC theo thứ tự ở M,N và cắt hai đường chéo BD,AC theo thứ tự ở H,K.
a)CMR:MH=KN.
b)Hãy nêu cách dựng đường thẳng d sao cho MH=HK=KN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hình thang ABCD(AB//CD) có
M∈AD(Gt)
N∈BC(gt)
MN//AB//DC(gt)
Do đó: \(\dfrac{AM}{AD}=\dfrac{BN}{BC}\)(Định lí Ta lét)(1)
Xét ΔADC có
M∈AD(Gt)
K∈AC(Gt)
MK//DC(gt)
Do đó: \(\dfrac{AM}{AD}=\dfrac{MK}{DC}\)(Hệ quả của Định lí Ta lét)(2)
Xét ΔBDC có
H∈BD(Gt)
N∈BC(Gt)
HN//DC(gt)
Do đó: \(\dfrac{BN}{BC}=\dfrac{HN}{DC}\)(Hệ quả của Định lí Ta lét)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{MK}{DC}=\dfrac{HN}{DC}\)
⇔MK=HN
⇔MK+KH=HN+KH
⇔MH=NK(đpcm)
Trong ΔDAB, ta có: OM // AB (gt)
(Hệ quả định lí Ta-lét) (1)
Trong ΔCAB, ta có: ON // AB (gt)
(Hệ quả định lí Ta-lét) (2)
Trong ΔBCD, ta có: ON // CD (gt)
Suy ra: (định lí Ta-lét) (3)
Từ (1), (2) và (3) suy ra:
Vậy: OM = ON