X:y=7:20;y:z=7:3và x-y-z=62
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3+x}{7+y}=\frac{3}{7};x+y=20\)
\(\Leftrightarrow21+7x=21+3y\Leftrightarrow7x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số ''='' nhau ta có
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{2}{10}=\frac{1}{5}\)
\(\Leftrightarrow\frac{x}{3}=\frac{1}{5}\Leftrightarrow5x=3\Leftrightarrow x=\frac{3}{5}\)
\(\Leftrightarrow\frac{y}{7}=\frac{1}{5}\Leftrightarrow5y=7\Leftrightarrow y=\frac{7}{5}\)
a) Từ \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot9\\y=-3\cdot7\\z=-3\cdot3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
b) Từ \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot7\\y=2\cdot20\\z=2\cdot32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\)
c) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=> \(x=12k\) ; \(y=9k\) ;\(z=5k\)
=> xyz = \(12k\cdot9k\cdot5k\) =\(540\cdot k^3\) = 20
=>\(k^3=20:540=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\)
=>\(k=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\cdot12\\y=\dfrac{1}{3}\cdot9\\z=\dfrac{1}{3}\cdot5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)
d) Từ \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49+9}=\dfrac{585}{83}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{585}{83}\cdot25\\y^2=\dfrac{585}{83}\cdot49\\z^2=\dfrac{585}{83}\cdot9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=\\y^2=\\z^2=\end{matrix}\right.\) đề bài sai nên ko tìm được x ; y ; z
\(\left\{{}\begin{matrix}2\left(x+y\right)=5\left(x-y\right)\\\frac{20}{x+y}+\frac{20}{x-y}=7\end{matrix}\right.\left(1\right)\) \(Đkxđ:x\ne\pm y\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{5}{x+y}=\frac{2}{x-y}\\\frac{20}{x+y}+\frac{20}{x-y}=7\end{matrix}\right.\left(2\right)\)
Đặt: \(\left\{{}\begin{matrix}a=\frac{1}{x+y}\\b=\frac{1}{x-y}\end{matrix}\right.\) Ta có hệ pt \((2)\) trở thành:
\(\left\{{}\begin{matrix}5a=2b\\20a+20b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a-2b=0\\20a+20b=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20a-8b=0\\20a+20b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=2b\\28b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{10}\\b=\frac{1}{4}\end{matrix}\right.\)
Với: \(\left\{{}\begin{matrix}a=\frac{1}{10}\\b=\frac{1}{4}\end{matrix}\right.\) Ta lại có hệ pt sau: \(\left\{{}\begin{matrix}\frac{1}{x+y}=\frac{1}{10}\\\frac{1}{x-y}=\frac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=10\\x-y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=14\\x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=3\end{matrix}\right.\left(tmđk\right)\)
Vậy ........
x/3=y/7 và x+y=20
=> \(\frac{x}{3}=\frac{y}{7}\Rightarrow\frac{x+y}{3+7}=\frac{20}{10}=2\)
\(\Rightarrow x=2.3=6\)
\(\Rightarrow y=2.7=14\)
\(\frac{x}{3}\)= \(\frac{y}{7}\)= \(\frac{x+y}{3+7}\)= \(\frac{20}{10}\)= \(2\)
Ta có: \(\frac{x}{3}\)= 2 => \(x\) = 6
\(\frac{y}{7}\)= 2 => \(y\)= 14
Theo bài ra ta có
x: y = 7 : 20 ; y: z = 7: 3 và x-y-z = 62
=> \(\frac{x}{7}=\frac{y}{20};\frac{y}{7}=\frac{z}{3}\) và x - y - z = 62
=> \(\frac{x}{49}=\frac{y}{140};\frac{y}{140}=\frac{z}{60}\) và x - y - z =60
\(\Rightarrow\frac{x}{49}=\frac{y}{140}=\frac{z}{60}\) và x- y - x = 60
Tự áp dụng tính chất dãy tỉ số = nhau và làm tiếp
Học tốt
Từ x ; y = 7 : 20
=> \(\frac{x}{7}=\frac{y}{20}\) => \(\frac{x}{49}=\frac{y}{140}\) (1)
Từ y : z = 7 : 3
=> \(\frac{y}{7}=\frac{z}{3}\) => \(\frac{y}{140}=\frac{z}{60}\) (2)
Từ (1) (2) => \(\frac{x}{49}=\frac{y}{140}=\frac{z}{60}\)
ADTC :
\(\frac{x}{49}=\frac{y}{140}=\frac{z}{60}\) \(=\frac{x-y-z}{49-140-60}=\frac{62}{-151}\)
Đến đây bn tự lm nhé :)