cho A={ 2;4;..}
số 2 gọi là số hạng thứ nhất,số 4 là số hạng thứ 2,......Hỏi số thứ 1005 là số nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)
b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
c) \(A=2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^5+...+2^{58}\right)⋮7\)
a) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰
= 2.(1 + 2 + 2² + ... + 2⁵⁸ + 2⁵⁹) 2
Vậy A ⋮ 2
b) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰
= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2⁵⁹.3
= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3
Vậy A ⋮ 3
c) A = 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + ... + 2⁵⁸ + 2⁵⁹ + 2⁶⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy A ⋮ 7
a)A=2(1+2+2^2+...+2^19)
=>A chia hết cho 2
b)A=(2+2^2)+(2^3+2^4)+...+(2^19+2^20)
A=2(1+2)+2^3(1+2)+...+2^19(1+2)
A=2.3+2^3.3+...+2^19.3
A=3(2+2^3+...+2^19)
=>A chia hết cho 3
c)A=(2+2^3)+(2^2+2^4)+...+(2^18+2^20)
A=2(1+2^2)+2^2(1+2^2)+...+2^18(1+2^2)
A=2.5+2^2.5+...+2^18.5
A=5(2+2^2+...+2^18)
=>A chia hết cho 5
\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)
\(A=2\cdot3+...+2^{99}\cdot3\)
\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)
2 ý kia tương tự
Giải:
Đặt S=(2+2^2+2^3+...+2^100)
=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296
=2.31+26.31+...+296.31
=31.(2+26+...+296)\(⋮\)31
a) \(A=1+2+2^2+...+2^{41}\)
\(2A=2+2^2+...+2^{42}\)
\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)
\(A=2^{42}-1\)
b) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)
\(A=3+2^2\cdot3+...+2^{40}\cdot3\)
\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)
Vậy A ⋮ 3
__________
\(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)
\(A=7+...+2^{39}\cdot7\)
\(A=7\cdot\left(1+..+2^{39}\right)\)
Vậy: A ⋮ 7
c) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)
\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)
\(A=5\cdot\left(1+2+...+2^{39}\right)\)
A ⋮ 5 nên số dư của A chia cho 5 là 0
ta có :
A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5
gfvbgf h10b4.16,h 5g1 b n nbnvh1hfyfty
1005 làm j nằm trong dãy số đó,theo quy luật ko cs số 1005