tìm giá trị nhỏ nhất của phân thức E=\(\frac{3}{-x^2+2x-4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
Lấy 2x3 - 5x2 + 10x - 4 chia cho 2x - 1 ta được x2 - 2x + 4
Phân tích x2 - 2x + 4 = x2 -2x + 1 + 3 = (x + 1)2 + 3 ==> x = -1 đề có GTNN = 3
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
Ta có: E = \(\frac{3}{-x^2+2x-4}\)
E = \(\frac{3}{-\left(x^2-2x+1\right)-3}\)
E = \(\frac{3}{-\left(x-1\right)^2-3}\)
Do -(x - 1)2 \(\le\)0 \(\forall\)x => -(x - 1)2 - 3 \(\le\)-3 \(\forall\)x
=> \(\frac{3}{-\left(x-1\right)^2-3}\ge-1\forall x\)
Dấu "=" xảy ra <=> x - 1 = 0 <=> x= 1
Vậy MinE = -1 khi x = 1
Để \(E=\frac{3}{-x^2+2x-4}\) đạt giá trị nhỏ nhất
\(\Leftrightarrow-x^2+2x-4\)đạt giá trị lớn nhất
\(\Leftrightarrow x^2-2x+4\)đạt giá trị nhỏ nhất
Ta có : \(x^2-2x+4=\left(x-1\right)^2+3\ge3\)
Dấu "=" xảy ra khi và chỉ khi \(x=1\)
\(\Leftrightarrow E=\frac{3}{-x^2-2x+4}=\frac{3}{-3}=-1\)
Vậy minE = -1 <=> x = 1