cho đa thức:A=\(3x^2y+xyz-xy^2-\left(3xyz+4x^2y-5xy^2\right)\))
tính giá trị của A nếu x+2z=4y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=-2xy+xy+xy^2=-xy+xy^2
Bậc là 3
b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)
Bậc là 4
c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)
Bậc là 5
d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)
bậc là 3
e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)
=-2x^2+2z^4-y^3
Bậc là 4
f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)
Bậc là 4
2: Thay \(x=\dfrac{1}{2}\) và y=2 vào M, ta được:
\(M=\dfrac{2\cdot\left(\dfrac{1}{2}\right)^2\cdot2-1.2\cdot\left(3\cdot\dfrac{1}{2}-2\cdot2\right)}{\dfrac{1}{2}\cdot2}\)
\(=4\cdot\dfrac{1}{4}-1.2\left(\dfrac{3}{2}-4\right)\)
\(=1-1.8+4.8\)
\(=4\)
1: Ta có: \(\left(-\dfrac{2}{3}x^3y^2\right)z\cdot5xy^2z^2\)
\(=\left(-\dfrac{2}{3}\cdot5\right)\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\cdot\left(z\cdot z^2\right)\)
\(=\dfrac{-10}{3}x^4y^4z^3\)
\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)
Thay x = 2 ; y = 1 ta được
\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)
a+b=(3xyz - 5xy+4x^2)+(2x^2+xyz+5xy)
a+b=(3xyz+xyz)+(-5xy+5xy)+(4x^2 + 2x^2)
a+b=4xyz+6x^2
câu b đợi xíu
\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)
\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)
\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)
\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)
Dấu = xảy ra khi \(x=y=z=9\)
Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\)
CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\) ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)
\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
Mặt khác : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)
Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)
" = " \(\Leftrightarrow x=y=z=9\)
\(a,A=11x^4y^3z^2+20x^2yz-\left(4xy^2z-10x^2yz+3x^4y^3z^2\right)-\left(2008xyz^2+8x^4y^3z^2\right)\)
\(A=11x^4y^3z^2+20x^2yz-4xy^2z-10x^2yz+3x^4y^3z^2-2008xyz^2+8x^4y^3z^2\)
\(A=\left(11x^4y^3z^2-3x^4y^3z^2+8x^4y^3z^2\right)+\left(20x^2yz+10x^2yz\right)-4xy^2z-2008xyz^2\)
\(A=30xy^2z-4xy^2z-2008xyz^2\)
Bậc của A là 3
b, \(A=30xy^2z-4xy^2z-2008xyz^2\)
\(A=2xyz\left(15x-2y-1004z\right)\)
mà 15x - 2y = 1004z
=> 15x - 2y - 1004z = 0
Thay vào ta có:
A = 2xyz . 0 = 0
Vậy giá trị của A là 0 nếu 15x - 2y = 1004z
a) x2+5x2+(−3x2)=3x2
b) 5xy2+12xy2+14xy2+(−12)xy2=19xy2
c) 3x2y2z2+x2y2z2=4x2y2z2
\(A=3x^2y+xyz-xy^2-\left(3xyz+4x^2y-5xy^2\right)\)
\(A=3x^2y+xyz-xy^2-3xyz-4x^2y+5xy^2\)
\(=\left(3x^2y-4x^2y\right)+\left(xyz-3xyz\right)+\left(5xy^2-xy^2\right)\)
\(=-x^2y-2xyz+4xy^2\)
\(=-xy\left(y+2z\right)+4xy^2\)
\(=-xy.4y+4xy^2\)
\(=-4xy^2+4xy^2=0\)