K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

\(6x^2-7x+2=0\)

Ta có \(\Delta=7^2-4.6.2=1,\sqrt{\Delta}=1\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7+1}{12}=\frac{2}{3}\\x=\frac{7-1}{12}=\frac{1}{2}\end{cases}}\)

\(x^6-1=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=0\)

Dễ thấy \(\hept{\begin{cases}x^2-x+1>0\forall x\\x^2+x+1>0\forall x\end{cases}}\)nên \(\hept{\begin{cases}x+1=0\\x-1=0\end{cases}}\Leftrightarrow x=\pm1\)

23 tháng 1 2020

\(6x^2-7x+2=0\)

\(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)

\(x^6-1=0\)

\(\Leftrightarrow x^6=1\)

\(\Leftrightarrow x=\pm1\)

Vậy tập nghiệm của pt là : \(S=\left\{\pm1\right\}\)

6 tháng 8 2015

a)x5+x-1=0

<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0

<=>(x4+x3+x2+x+1)(x-1)=0

Do x4+x3+x2+x+1>0

=>x+1=0

<=>x=1

27 tháng 1 2020

Lạnh xun loz

phải không mày >

haizz

27 tháng 1 2020

\(6x^4+7x^3-36x^2-7x+6=0\)

\(\Leftrightarrow\left(6x^4-11x^3-3x^2+2x\right)+\left(18x^3-33x^2-9x+6\right)=0\)

\(\Leftrightarrow x\left(6x^3-11x^2-3x+2\right)+3\left(6x^3-11x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(6x^3-11x^2-3x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\left(6x^3-14x+4x\right)+\left(3x^2-7x+2\right)\right]\left(x+3\right)=0\)

\(\Leftrightarrow\left[2x\left(3x^2-7x+2\right)+\left(3x^2-7x+2\right)\right]\left(x+3\right)=0\)

\(\Leftrightarrow\left(3x^2-7x+2\right)\left(2x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(3x^2-6x-x+2\right)\left(2x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[3x\left(x-2\right)-\left(x-2\right)\right]\left(2x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)\left(2x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x-1=0\end{cases}}\)hoặc \(\orbr{\begin{cases}2x+1=0\\x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}\)hoặc\(\orbr{\begin{cases}x=\frac{-1}{2}\\x=-3\end{cases}}\)

Vậy tập hợp nghiệm \(S=\left\{2;-3;\frac{1}{3};\frac{-1}{2}\right\}\)

21 tháng 5 2016

i)

\(x^2-x^2\sqrt{2}-2x-2\sqrt{2}x+1+3\sqrt{2}=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x^2-2x+3\right)=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2+2\sqrt{2}=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2=-2\sqrt{2}\)

=> Phương trình vô nghiệm

ii)

Đặt: \(6x^2-7x=a\)

Ta có: \(a^2-2a-3=0\)

\(\left(a-3\right)\left(a+1\right)=0\)

\(\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0\)

\(x=\frac{3}{2};-\frac{1}{3};1;\frac{1}{6}\)

21 tháng 5 2016

 Phương trình vô nghiệm

ii)

Đặt: $6x^2-7x=a$6x27x=a

Ta có: $a^2-2a-3=0$a22a3=0

$\left(a-3\right)\left(a+1\right)=0$(a3)(a+1)=0

$\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0$(6x27x3)(6x27x+1)=0

$

2 tháng 3 2019

\(x^4-6x^3+7x^2+6x-8=0\)

\(\Leftrightarrow x^4-4x^3-2x^3+8x^2-x^2+4x+2x-8=0\)

\(\Leftrightarrow x^3\left(x-4\right)-2x^2\left(x-4\right)-x\left(x-4\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-2x^2-x+2\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-2\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\in\left\{-1;1;2;4\right\}\)

Vậy S={-1;1;2;4}

NV
2 tháng 3 2020

a. \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)\left(x+1\right)\left(2x-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\\x+1=0\\2x-9=0\end{matrix}\right.\) \(\Rightarrow x=\)

b. \(\Leftrightarrow x^3+x+3x^2+3=0\)

\(\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)

c. \(\Leftrightarrow2x\left(3x-1\right)^2-\left(9x^2-1\right)=0\)

\(\Leftrightarrow\left(6x^2-2x\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(6x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\\6x+1=0\end{matrix}\right.\)

NV
2 tháng 3 2020

d.

\(\Leftrightarrow x^3-3x^2+2x-3x^2+9x-6=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)-3\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x-2=0\end{matrix}\right.\)

e.

\(\Leftrightarrow x^3+2x^2+x+3x^2+6x+3=0\)

\(\Leftrightarrow x\left(x^2+2x+1\right)+3\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\)

15 tháng 3 2018

a. Ta có:

\(x^2-6x+3=0\Leftrightarrow x^2-2.x.3+3^2-6=0\)

\(\Leftrightarrow\left(x-3\right)^2-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=\sqrt{6}\\x-3=-\sqrt{6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)

15 tháng 3 2018

Ta có:

\(x^2-7x+14=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{7}{2}+\dfrac{49}{4}+\dfrac{7}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}=0\)

Ta có: \(\left(x+\dfrac{7}{2}\right)^2\ge0\)

=> \(\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}>0\)

=> pt vô nghiệm

21 tháng 2 2018

3)

\(x^3-7x+6=0\)

\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)

\(\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(2x+6\right)=0\)

\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)

21 tháng 2 2018

4) \(\left(2x+1\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow3x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy ................

7 tháng 2 2020

1/ \(x^3-7x+6=0\)

\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)

\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc   \(x-1=0\)

hoặc   \(x+2=0\)

\(\Leftrightarrow\)\(x=-3\)

hoặc   \(x=1\)

hoặc   \(x=-2\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;1;-2\right\}\)

2/ \(x^3-6x^2-x+30\)

\(\Leftrightarrow x^3+2x^2-8x^2-16x+15x+30=0\)

\(\Leftrightarrow x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+15\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-3x-5x+15\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)

hoặc   \(x-3=0\)

hoặc   \(x-5=0\)

\(\Leftrightarrow\)\(x=-2\)

hoặc   \(x=3\)

hoặc   \(x=5\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-2;3;5\right\}\)

3/ \(x^3-9x^2+6x+16=0\)

\(\Leftrightarrow x^3+x^2-10x^2-10x+16x+16=0\)

\(\Leftrightarrow x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-10x+16\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-8x-2x+16\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-8\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc  \(x-8=0\)

hoặc  \(x-2=0\)

\(\Leftrightarrow\)\(x=-1\)

hoặc   \(x=8\)

hoặc   \(x=2\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;8;2\right\}\)

7 tháng 2 2020

4/ Đề bài sai ! Sửa lại nhé :

 \(2x^3-x^2+5x+3=0\)

\(\Leftrightarrow2x^3+x^2-2x^2-x+6x+3=0\)

\(\Leftrightarrow x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2-x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x^2-x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{1}{2}\right\}\)