K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ : \(x\ne0;x-\frac{1}{x}\ge0;1-\frac{1}{x}\ge0\)

phương trình tương đương với 

\(\sqrt{\frac{x-1}{x}\left(x+1\right)}+5\sqrt{\frac{x-1}{x}}+\frac{2\left(x-1\right)}{x}-3\left(x+1\right)+3=0\)\(\left(1\right)\)

Đặt \(a=\sqrt{\frac{x-1}{x}}\)\(;\)\(b=\sqrt{x+1}\)\(\left(a,b\ge0\right)\)

Ta có \(\left(1\right)\)\(\Leftrightarrow ab+5a+2a^2-3b^2+3=0\)

\(\Leftrightarrow\left(a-b+1\right)\left(2a+3b+3\right)=0\)

\(\Leftrightarrow a-b+1=0\)(vì \(a,b\ge0\)nên \(2a+3b+3>0\))

\(\Leftrightarrow\sqrt{x+1}-\sqrt{\frac{x-1}{x}}=1\)\(\left(2\right)\)

Bình phương hai vế của \(\left(2\right)\)ta được 

\(x+1-2\sqrt{\frac{x^2-1}{x}}+\frac{x-1}{x}=1\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)-2\sqrt{x-\frac{1}{x}}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-\frac{1}{x}}-1\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{x}=1\)

\(\Leftrightarrow x^2-x-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{5}}{2}\left(TMDK\right)\\x=\frac{1-\sqrt{5}}{2}\left(L\right)\end{cases}}\)

Vậy phương trình có nghiệm là : \(x=\frac{1+\sqrt{5}}{2}\)

P / s : Các bạn tham khảo nha

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

x=1 là nghiệm, nhân liên hợp dc bn mình làm nãy giờ mà ấn gửi nó báo Please_Sign_In nản luôn =="

4 tháng 1 2017

\(4x\sqrt[3]{\frac{1}{x}}+\frac{1}{x}.\sqrt[3]{x}=5\)

\(\Leftrightarrow4.\sqrt[3]{x^2}+\frac{1}{\sqrt[3]{x^2}}=5\)

Đặt \(\sqrt[3]{x^2}=a\)

\(\Rightarrow4a+\frac{1}{a}=5\)

\(\Leftrightarrow4a^2-5a+1=0\)

Làm tiếp đi nhé 

5 tháng 1 2017

Thanks alibaba nguyễn nha, bn học lớp mấy vậy? bn có thi MTCT ko?

4 tháng 10 2016

ĐKXĐ: z>0

pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)

<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)

<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)

<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)

<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)

<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)

<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)

vậy x=2

4 tháng 10 2016

Một bài làm rất hay !

20 tháng 7 2017

potay.com

13 tháng 8 2017

em hổng có biết đâu vì em chưa hc lp 9 mới lại đề bài dài kinh khủng

8 tháng 10 2020

a) ĐK: \(x>2009;y>2010;z>2011\)

\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)

\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)

Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)

8 tháng 10 2020

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)

\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)

(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)

Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)

Vậy phương trình có một nghiệm duy nhất là 3