thu gọn S=1\(-\tan a+\tan^2a-\tan^3a+...\) với 0<a<\(\frac{\Pi}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)
\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)
\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)
\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)
\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)
\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)
Lời giải:
Ta có:
\(\frac{\tan ^3a}{\sin ^2a}-\frac{1}{\sin a\cos a}+\frac{\cot ^3a}{\cos ^2a}=\frac{\tan ^3a\cos ^2a+\cot ^3a\sin ^2a}{\sin ^2a\cos ^2a}-\frac{\sin a\cos a}{\sin ^2a\cos ^2a}\)
\(=\frac{\frac{\sin ^3a}{\cos ^3a}.\cos ^2a+\frac{\cos ^3a}{\sin ^3a}.\sin ^2a}{\sin ^2a\cos ^2a}-\frac{\sin a\cos a}{\sin ^2a\cos ^2a}\)
\(=\frac{\frac{\sin ^3a}{\cos a}+\frac{\cos ^3a}{\sin a}-\sin a\cos a}{\sin ^2a\cos ^2a}=\frac{\sin ^4a+\cos ^4a-\sin ^2a\cos ^2a}{\sin ^3a\cos ^3a}\)
\(=\frac{(\sin ^2a+\cos ^2a)(\sin ^4a+\cos ^4a-\sin ^2a\cos ^2a)}{\sin ^3a\cos ^3a}\)
\(=\frac{\sin ^6a+\cos ^6a}{\sin ^3a\cos ^3a}=\frac{\sin ^3a}{\cos ^3a}+\frac{\cos ^3a}{\sin ^3a}=\tan ^3a+\cot ^3a\)
Ta có đpcm.
\(-\frac{\pi}{2}< a< 0\Rightarrow cosa>0\)
\(\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)
\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)
\(A=\frac{tana+cota}{1+tan^2a}=\frac{tana+\frac{1}{tana}}{1+tan^2a}=\frac{1+tan^2a}{\left(1+tan^2a\right)tana}=\frac{1}{tana}=cota\)
\(A+B+C=180^0\Rightarrow tan\left(A+B\right)=-tanC\)
\(\Rightarrow\frac{tanA+tanB}{1-tanA.tanB}=-tanC\Leftrightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)
\(\Leftrightarrow tanA+tanB+tanC=tanA.tanB.tanC\)
\(2A+2B+2C=360^0\Rightarrow tan\left(2A+2B\right)=-tan2C\)
\(\Leftrightarrow\frac{tan2A+tan2B}{1-tan2A.tan2B}=-tan2C\)
\(\Leftrightarrow tan2A+tan2B+tan2C=tan2A.tan2B.tan2C\)
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=\frac{1}{sin^2a}\left(tan^3a-tana+cot^3a.tan^2a\right)\)
\(=\frac{1}{sin^2a}\left(tan^3a-tana+cota\right)=\left(1+cot^2a\right)\left(tan^3a-tana+cota\right)\)
\(=tan^3a-tana+cota+cot^2a.tan^3a-cot^2a.tana+cot^3a\)
\(=tan^3a-tana+cota+tana-cota+cot^3a\)
\(=tan^3a+cot^3a\)
b,ta có :\(\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a-sin^2a.cos^2a}{cos^2a-sin^2a.cos^2a}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^4a}{cos^4a}=\frac{sin^4a}{cos^4a}\)luon dung => dpcm
a, \(\tan^2\alpha\left(2\cos^2\alpha+\sin^2\alpha-1\right)\)
\(=\tan^2\alpha\left(\cos^2\alpha+\cos^2\alpha+\sin^2\alpha-1\right)\)
\(=\tan^2\alpha\left(\cos^2\alpha+1-1\right)\)
\(=\tan^2\alpha.\cos^2\alpha=1\)
b, \(\sin\alpha-\sin\alpha.\cos^2\alpha\)
\(=\sin\alpha\left(1-\cos^2\alpha\right)\)
\(=\sin\alpha.\sin^2\alpha\)
bn ơi lm j có công thức \(\tan^2a\times\cos^2a=1\) đâu
Ta có: \(tan\alpha\in\left(0;1\right)\) với mọi \(\alpha \in \left( {0;\dfrac{\pi }{4}} \right) \), do đó:
\(S = \underbrace {1 - \tan \alpha + {{\tan }^2}\alpha - {{\tan }^3}\alpha + ...}_{CSN\_lvh:{u_1} = 1,q = - \tan \alpha } = \dfrac{1}{{1 + \tan \alpha }} = \dfrac{{\cos \alpha }}{{\sin \alpha + \cos \alpha }} = \dfrac{{\cos \alpha }}{{\sqrt 2 \sin \left( {\alpha + \dfrac{\pi }{4}} \right)}}\)