K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2016

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)

<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)

<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)

=> x = -1999 hoặc x = - 2008

 

27 tháng 6 2016

oho

12 tháng 7 2023

Mày nhìn cái chóa j

23 tháng 3 2020

AYUASGSHXHFSGDB HAGGAHAJF

28 tháng 2 2020

Ta có vế trái của pt luôn \(\ge0\)

Do đó : \(11x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=x+\frac{1}{2}\\...\\\left|x+\frac{1}{110}\right|=x+\frac{1}{110}\end{cases}}\)

Khi đó pt trở thành :

\(x+\frac{1}{2}+x+\frac{1}{6}+...+x+\frac{1}{110}=11x\)

\(\Leftrightarrow10x+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}=11x\)

\(\Leftrightarrow x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

\(\Leftrightarrow x=1-\frac{1}{11}=\frac{10}{11}\) ( thỏa mãn )

Vậy : pt đã cho có nghiệm \(S=\left\{\frac{10}{11}\right\}\)

28 tháng 2 2020

Dễ thấy \(VT>0\forall x\)

\(\Rightarrow11x>0\Rightarrow x>0\)

Phương trình trở thành \(10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=11x\)

\(\Rightarrow x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)

\(\Rightarrow x=1-\frac{1}{11}=\frac{10}{11}\)

Vậy \(x=\frac{10}{11}\)

13 tháng 3 2019

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow16=\left(x+4\right)^2\)

\(\Leftrightarrow x^2+8x+16=16\)

\(\Leftrightarrow x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)

V...\(S=\left\{-8\right\}\)

^^

13 tháng 3 2019

bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé

Nhận thấy vế trái không âm với mọi x nên điều kiện cần để x là nghiệm của phương trình là vế phải không âm, tức là :

\(101x\ge0\Leftrightarrow x\ge0\)

Khi đó các biểu thức trong tất cả các dấu giá trị tuyệt đối ở vế trái đều dương.
Vì vậy phương trình trở thành :

\(\left(x+\frac{1}{1.5}\right)+\left(x+\frac{1}{5.9}\right)+.....+\left(x+\frac{1}{397.401}\right)=101x\)

\(\Leftrightarrow\left(\frac{1}{1.5}+\frac{1}{5.9}+.....+\frac{1}{397.401}\right)+100x=101x\)

\(\Leftrightarrow x=\frac{1}{1.5}+\frac{1}{5.9}+......+\frac{1}{397.401}\)

\(\Leftrightarrow4x=\frac{4}{1.5}+\frac{4}{5.9}+......+\frac{4}{397.401}\)

\(\Leftrightarrow4x=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-......+\frac{1}{397}-\frac{1}{401}\)

\(\Leftrightarrow4x=1-\frac{1}{401}\)

\(\Leftrightarrow4x=\frac{400}{401}\)

\(\Leftrightarrow x=\frac{100}{401}\)(  thỏa mãn điều kiện \(x\ge0\))

Vậy phương trình có nghiệm là  \(x=\frac{100}{401}\)

22 tháng 2 2017

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{\left(x+3\right)-x}{x\left(x+3\right)}=\frac{3}{10}\)

\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)

\(\Rightarrow x\left(x+3\right)=10=2.\left(2+3\right)\)

\(\Rightarrow x=2\)

22 tháng 2 2017

pt <=> \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)

\(\Leftrightarrow x^2+3x-10=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

30 tháng 5 2017

\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)

\(\Leftrightarrow4\left(x+\frac{1}{x}\right)^2\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow4\left(x+\frac{1}{x}\right)^2\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2\left(x+\frac{1}{x}\right)^2=x+4\\2\left(x+\frac{1}{x}\right)^2=-x-4\end{cases}}\)

Tới đây thì đơn giản rồi làm tiếp nhé:

30 tháng 5 2017

Bạn nhân lần lượt ra, sau đó rút gọn, sau một hồi sẽ được:

     \(\frac{4\left(x^2+1\right)^4}{x^4}=\left(x+4\right)^2\)

\(\Leftrightarrow\frac{4\left(x^2+1\right)^2}{x^2}=x+4\)