K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1Đặt:\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2005.2006}\)\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\)Chứng minh rằng \(\frac{A}{B}\) là số nguyên.2Tìm nghiệm nguyên dương của phương trình:xy-2x-3y+1=03Cho f(x)=\(ãx^2+bx+c\)thỏa mãn:f(-3)<-10;f(-1)>0;f(1)<-1.Hãy xác định dấu của hệ số a4Cho x2+y2=1.Tìm giá trị lớn nhất của biểu thức:S=(2-x)(2-y)5CHo tam giác ABC với \(\widehat{B}\)<900...
Đọc tiếp

1Đặt:

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2005.2006}\)

\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\)

Chứng minh rằng \(\frac{A}{B}\) là số nguyên.

2Tìm nghiệm nguyên dương của phương trình:xy-2x-3y+1=0

3Cho f(x)=\(ãx^2+bx+c\)thỏa mãn:f(-3)<-10;f(-1)>0;f(1)<-1.Hãy xác định dấu của hệ số a

4Cho x2+y2=1.Tìm giá trị lớn nhất của biểu thức:S=(2-x)(2-y)

5CHo tam giác ABC với \(\widehat{B}\)<900 và \(\widehat{B}=2\widehat{C}\).Kẻ AH vuông góc với BC(H\(\in\)BC).Trên tia đối của tia BA LẤY ĐIỂM e SAO CHO BE=BH.Đường thẳng HE cắt AC tại D.

a)Chứng minh:\(\widehat{E}=\frac{1}{2}\widehat{ABC}\)

b)Chứng minh DA=DH=DC

c)Lấy điểm B*sao cho H là trung điểm của BB*.Chứng minh rằng:tam giác AB*C cân.

d)Chứng minh:AE=HC.

6Cho tam giác ABC(AB=AC) với góc ACB=80 độ.Trong tam giác ABC có điểm M sao cho góc MAB =10 độ và góc MBA=30 độ.Tính góc BMC

 

2
23 tháng 1 2020

                                                         Bài giải

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2005\cdot2006}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\frac{1}{2}-\frac{1}{2006}\)

\(A=\frac{501}{1003}\)

23 tháng 1 2020

                                                         Bài giải

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2005\cdot2006}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\frac{1}{2}-\frac{1}{2006}\)

\(A=\frac{501}{1003}\)

20 tháng 3 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)\)

\(=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)(1)

\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+....+\frac{1}{2006.1004}\)

\(\Rightarrow\frac{1}{1004}+\frac{1}{2006}+\frac{1}{1005}+\frac{1}{2005}+...+\frac{1}{2006}+\frac{1}{1004}=2\left(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\right)\)

\(=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}\)(2)

Thế (1) và (2) vào ta có:

\(\frac{A}{B}=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}}\)

2 tháng 7 2016

A=2005/2006

2 tháng 7 2016

A=1−12+13−14+...+12005−12006=(1+12+...+12006)−(1+12+..+11003)=11004+11005+...+12006

Lại có  13010.B=11004+12006+11005+12005+...+11004=11505(11004+11005+...+12006)

Suy ra A/B = 1505

Tham khảo nha 

2 tháng 7 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2005.2006}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2005}-\frac{1}{2006}\)

\(=1-\frac{1}{2006}\)

\(=\frac{2005}{2006}\)

5 tháng 7 2015

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2003.2004}+\frac{1}{2005.2006}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)\(=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)

\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+...+\frac{1}{2006.1004}\)

=>3010B=\(\frac{1}{1004}+\frac{1}{2006}+\frac{1}{1005}+\frac{1}{2005}+...+\frac{1}{2006}+\frac{1}{1004}=2\cdot\left(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\right)\)

=>B=\(\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}\)

=>\(\frac{A}{B}=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}}=1505\)

21 tháng 8 2016

Kết quả là \(1505\)

K nha!

8 tháng 7 2015

nguyentuantai 1 phút trước (09:28)

lí do 1 quá dài

li do 2 ko thấy đề