K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

Bài này chắc tính tổng ha :))

Số số hạng: \(\left(20-1\right):1+1=20\)

Tổng của dãy: \(\frac{\left(1+20\right).20}{2}=210\)

Vậy .............................

20 tháng 1 2020

= {1+19} + {2+18} + {3+17} + {4+16} + {5+15} + {6+14} + {7+13} + {8+12} + {9+11} +10 +20

= 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 10 + 20

= 210

30 tháng 5 2018

Bạn ơi, bài này là tính tổng hay chứng minh gì thế bạn ?

30 tháng 5 2018

Bạn ơi hình như bạn ghi đề sai
Cái này chỉ cần bỏ ngoặc ghép cặp lại rồi tính là được mà, mỗi cặp = 1

21 tháng 8 2023

\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)

\(=\dfrac{1}{20}\)

3 tháng 11 2018

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)(Dùng cộng rồi trừ chính số đó bằng 0)

=\(\frac{1}{2}-\frac{1}{20}\)

=\(\frac{10}{20}-\frac{1}{20}\)( Dùng phương pháp quy đồng)

=\(\frac{9}{20}\)

6 tháng 4 2018

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\left(19SH\right)\)

\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+..+\frac{1}{20}>\frac{19}{20}\)

Vậy ................

6 tháng 4 2018

Đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\) ta có : 

\(A>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)

Do có \(20-2+1=19\) phân số \(\frac{1}{20}\) nên : 

\(A>19.\frac{1}{20}=\frac{19}{20}\)

Vậy \(A>\frac{19}{20}\)

Chúc bạn học tốt ~ 

22 tháng 12 2017

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)

Sau khi lược bỏ,ta còn lại:

\(A=1-\frac{1}{20}=\frac{19}{20}\)

22 tháng 12 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{18.19}+\frac{1}{19.20}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{20}\)

\(\Rightarrow A=\frac{19}{20}\)

22 tháng 12 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{18}-\frac{1}{19}\)

\(=1-\frac{1}{19}=\frac{18}{19}\)