Giải phương trình :
\(\frac{x^2+3x+3}{x^2-4x+3}+\frac{x^2+6x+3}{x^2+5x+3}=\frac{53}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: $x\ne 1,x\ne 3,x\ne \dfrac{-5\pm \sqrt{13}}{2}$
+$x=0$ không là nghiệm của phương trình
+ Với $x\ne 0,$phương trình đã cho được viết $\dfrac{x+3+\dfrac{3}{x}}{x-4+\dfrac{3}{x}}+\dfrac{x+6+\dfrac{3}{x}}{x+5+\dfrac{3}{x}}=\dfrac{53}{12}$
Đặt $y=x+\dfrac{3}{x}+3,$ phương trình trở thành: $\dfrac{y}{y-7}+\dfrac{y+3}{y+2}=\dfrac{53}{12}$
\(\begin{align}
& \Rightarrow 12\left( {{y}^{2}}+2y+{{y}^{2}}-4y-21 \right)=53\left( {{y}^{2}}-5y-14 \right) \\
& \Leftrightarrow 24{{y}^{2}}-24y-252=53{{y}^{2}}-265y-742 \\
& \Leftrightarrow 29{{y}^{2}}-241y-490=0 \\
\end{align} \\
\Leftrightarrow \left[ \begin{array}{l}
y = 10 \Rightarrow x + \dfrac{3}{x} = 7 \Leftrightarrow {x^2} - 7x + 4 = 0 \Leftrightarrow x = \dfrac{{7 \pm \sqrt {37} }}{2}\left( {TM} \right)\\
y = - \dfrac{{49}}{{29}} \Rightarrow x + \dfrac{3}{x} = - \dfrac{{49}}{{29}} \Leftrightarrow 29{x^2} + 49x + 87 = 0\left( {VN} \right)
\end{array} \right.{\rm{ }}
\)
Vậy phương trình có tập nghiệm là \(S=\left\{ \dfrac{7\pm \sqrt{37}}{2} \right\}
\)
Điều kiện: $x\ne 1,x\ne 3,x\ne \dfrac{-5\pm \sqrt{13}}{2}$
+$x=0$ không là nghiệm của phương trình
+ Với $x\ne 0,$phương trình đã cho được viết $\dfrac{x+3+\dfrac{3}{x}}{x-4+\dfrac{3}{x}}+\dfrac{x+6+\dfrac{3}{x}}{x+5+\dfrac{3}{x}}=\dfrac{53}{12}$
Đặt $y=x+\dfrac{3}{x}+3,$ phương trình trở thành: $\dfrac{y}{y-7}+\dfrac{y+3}{y+2}=\dfrac{53}{12}$
$\begin{align}
& \Rightarrow 12\left( {{y}^{2}}+2y+{{y}^{2}}-4y-21 \right)=53\left( {{y}^{2}}-5y-14 \right) \\
& \Leftrightarrow 24{{y}^{2}}-24y-252=53{{y}^{2}}-265y-742 \\
& \Leftrightarrow 29{{y}^{2}}-241y-490=0 \\
& \Leftrightarrow \left[ \begin{align}
& y=10\Rightarrow x+\dfrac{3}{x}=7\Leftrightarrow {{x}^{2}}-7x+4=0\Leftrightarrow x=\dfrac{7\pm \sqrt{37}}{2}\left( TM \right) \\
& y=-\dfrac{49}{29}\Rightarrow x+\dfrac{3}{x}=-\dfrac{49}{29}\Leftrightarrow 29{{x}^{2}}+49x+87=0\left( VN \right) \\
\end{align} \right. \\
\end{align}$ Vậy phương trình có tập nghiệm là $S=\left\{ \dfrac{7\pm \sqrt{37}}{2} \right\}$
Bài làm
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)
\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)
\(\Leftrightarrow6x+4=0\)
\(\Leftrightarrow x=-\frac{4}{6}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy x = -2/3 là nghiệm.
@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4
Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)
a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)
\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)
\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)
\(\Leftrightarrow108-24x+12=324-27x+27\)
\(\Leftrightarrow3x=231\)
\(\Rightarrow x=77\)
c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)
\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)
\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)
\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3