Rút gọn biểu thức
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
\(B=\left(n-1\right)+..+2+1=\frac{\left(n-1\right)n}{2}\)
\(A+n+B=\frac{\left(n-1\right)n}{2}+n+\frac{\left(n-1\right)n}{2}=\left(n-1\right)n+n=n^2\)
n là tự nhiên \(\sqrt{n^2}=n\)
A= \(\left(\frac{3}{4}\right)\left(\frac{8}{9}\right)\left(\frac{15}{16}\right)......\left(\frac{\left(n-1\right)\left(n+1\right)}{n.n}\right)\)
\(=\frac{3.8.15....\left(n-1\right)\left(n+1\right)}{\left(2.3.4......n\right)\left(2.3.4.......n\right)}=\frac{1.3.2.4.3.5.......\left(n-1\right)\left(n+1\right)}{\left(2.3.4.....n\right)\left(2.3.4..................n\right)}=\frac{\left(1.2.3.......\left(n-1\right)\right)\left(3.4.5........\left(n+1\right)\right)}{\left(2.3.4.....n\right)\left(2.3.4...........n\right)}\)
\(=\frac{1.\left(n+1\right)}{n.2}=\frac{n+1}{2n}\)
mình chỉ tick cho những người giải thôi, không chấp nhận trường hợp xin tick, và cấm tình trạng spam bậy. Nếu ai giải được thì mình tick, nếu ai không giải, xin tick, hay spam để kiếm điểm hỏi đáp thì miễn.
ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)
1) Ta có: \(N=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
2) Để N=-2016 thì 1-a=-2016
\(\Leftrightarrow1-a+2016=0\)
\(\Leftrightarrow2017-a=0\)
hay a=2017(thỏa ĐK)
Vậy: Để N=-2016 thì a=2017
\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)
\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)
\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)
\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)
\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
a) \(M=3\sqrt{3}-\sqrt{12}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(M=3\sqrt{3}-2\sqrt{3}-\left|\sqrt{3}-1\right|\)
\(M=\sqrt{3}-\sqrt{3}+1\)
\(M=1\)
b) Ta có:
\(N=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(N=\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(N=\left(\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(N=\dfrac{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)}\)
\(N=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Theo đề ta có: \(M=2N\)
Khi: \(1=2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\)
\(\Leftrightarrow1=\dfrac{2\sqrt{a}-2}{\sqrt{a}}\)
\(\Leftrightarrow\sqrt{a}=2\sqrt{a}-2\)
\(\Leftrightarrow2\sqrt{a}-\sqrt{a}=2\)
\(\Leftrightarrow\sqrt{a}=2\)
\(\Leftrightarrow a=4\left(tm\right)\)
\(=\left(18x^{2n-3}+3x^n\right)-\left(18x^{2n-3}-2x^n\right)\)
\(=18x^{2n-3}+3x^n-18x^{2n-3}+2x^n\)
\(=\left(18x^{2n-3}-18x^{2n-3}\right)+\left(3x^n+2x^n\right)\)
\(=5x^n\)
Ta có : \(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=\sqrt{2\left(1+2+3+...+n-1\right)+n}\)
\(=\sqrt{2\left(n-1\right).\left(n-1+1\right):2+n}=\sqrt{\left(n-1\right).n+n}=\sqrt{\left(n-1+1\right).n}=\sqrt{n^2}=n\)