Cho hcn ABCD có AB: x-y+1=0 và phương trình BD: 2x +y-1=0, đường thẳng AC đi qua M(-1;1). Tìm toạ độ các đỉnh ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ B là:
x-2y+1=0và x-7y+14=0
=>x=7 và y=3
AB: x-2y+1=0
=>BC: 2x+y+c=0
Thay x=7 và y=3 vào BC, ta được:
c+2*7+3=0
=>c=-17
=>2x+y-17=0
A thuộc AB nên A(2a+1;a); C thuộc BC nen C(c;17-2c)(a<>3; c<>7)
Gọi I là giao của AC và BD
Tọa độ I là;
\(\left\{{}\begin{matrix}x=\dfrac{2a+1+c}{2}\\y=\dfrac{a+17-2c}{2}\end{matrix}\right.\)
I thuộc BD nên 3c-a=18
=>a=3c-18
=>A(6c-35; 3c-18)
vecto MA=(6c-37; 3c-19)
vecto MC=(c-2;16-2c)
M,A,C thẳng hàng nên (6c-37)/(c-2)=(3c-19)/16-2c
=>c=7(loại) hoặc c=6(nhận)
=>A(1;0); C(6;5); B(7;3); D(0;2)
\(cosB=\dfrac{\left|1.2+\left(-7\right).1\right|}{\sqrt{1^2+\left(-7\right)^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
Gọi vtpt của AC có tọa độ \(\left(a;b\right)\)
\(\Rightarrow cosC=cosB=\dfrac{1}{\sqrt{10}}=\dfrac{\left|2a+b\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow2\left(2a+b\right)^2=a^2+b^2\)
\(\Leftrightarrow7a^2+8ab+b^2=0\Leftrightarrow\left(a+b\right)\left(7a+b\right)=0\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-1\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;-7\right)\end{matrix}\right.\)
(Trường hợp \(\left(a;b\right)=\left(1-;7\right)\) loại do khi đó AC song song AB, vô lý)
\(\Rightarrow\) Phương trình AC: \(1\left(x-4\right)-1\left(y-0\right)=0\)