K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

a, Có \(C^2_9=36\) cách chọn 2 cuốn sách.

18 tháng 10 2021

b, TH1: 1 quyển sách toán và 1 quyển sách văn.

Có 4 cách chọn sách toán.

Có 3 cách chọn sách văn.

\(\Rightarrow\) Có \(4.3=12\) cách chọn thỏa mãn.

TH2: 1 quyển sách toán và 1 quyển sách ngoại ngữ.

Có 4 cách chọn sách toán.

Có 2 cách chọn sách ngoại ngữ.

\(\Rightarrow\) Có \(4.2=8\) cách chọn thỏa mãn.

TH3: 1 quyển sách văn và 1 quyển sách ngoại ngữ.

Có 3 cách chọn sách văn.

Có 2 cách chọn sách ngoại ngữ.

\(\Rightarrow\) Có \(3.2=6\) cách chọn thỏa mãn.

Vậy có \(12+8+6=26\) cách chọn thỏa mãn yêu cầu bài toán.

17 tháng 7 2018

Chọn B.

TH1: 3 quyển được chọn có 2 quyển sách Văn, 1 quyển sách Toán.

Chọn 2 quyển Văn trong 6 quyển Văn khác nhau có C_6^2 cách.

Chọn 1 quyển Toán trong 10 quyển Toán khác nhau có C_{10}^1 cách.

Áp dụng quy tắc nhân, có  C_6^2.C_{10}^1 = 150.

TH2: 3 quyển được chọn có 2 quyển sách Toán, 1 quyển sách Văn.

Chọn 1 quyển Văn trong 6 quyển Văn khác nhau có C_6^1 cách.

Chọn 2 quyển Toán trong 10 quyển Toán khác nhau có C_{10}^2 cách.

Áp dụng quy tắc nhân, có  C_6^1.C_{10}^2 = 270.

Vậy số cách chọn ra 3 quyển sách trong đó có đúng 2 quyển cùng loại là 150 + 270 = 420.

17 tháng 8 2017

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

Chọn 4 quyển sách khác nhau đủ 3 loại, có các TH sau:
TH1: 1 toán, 1 lý, 2 hóa: $A_1=C^1_6.C^1_7.C^2_8$ cách 

TH2: 2 toán, 1 lý, 1 hóa: $A_2=C^2_6.C^1_7.C^1_8$ cách 

TH3: 1 toán, 2 lý, 1 hóa: $A_3=C^1_6.C^2_7.C^1_8$ cách 

Tổng số cách: $A_1+A_2+A_3=3024$ cách 

14 tháng 1 2019

Xếp theo thứ tự: ngữ văn- toán- ngữ văn- toán- ngữ văn- toán-ngữ văn-toán- ngữ văn. Vậy có 5.4.4.3.3.2.2.1=2880 cách

Chọn B

18 tháng 4 2018

a) Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách chọn hai quyển từ tầng thứ k, k = 1, 2, 3, 4

Vậy có tất cả Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách chọn.

b) Tương tự, có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách chọn.

18 tháng 5 2017

a) \(C^2_{10}\) cách chọn hai quyển từ tầng \(k,k=1,2,3,4\). Vậy có tất cả \(\left(C^2_{10}\right)^4\) cách chọn

b) Tương tự, có \(\left(C^8_{10}\right)^4=\left(C^2_{10}\right)^4\) cách chọn

20 tháng 2 2019

c. Số cách chọn 2 quyển sách khác môn học là: 5×6+5×8+6×8=118

Chọn C

NV
20 tháng 4 2023

Xếp 5 quyển Toán cạnh nhau: \(5!\) cách

Xếp 5 quyển Lý cạnh nhau: \(4!\) cách 

Xếp 3 quyển Văn cạnh nhau: \(3!\) cách

Hoán vị 3 loại Toán-Lý-Văn: \(3!\) cách

Tổng cộng có: \(5!.4!.3!.3!=...\) cách xếp thỏa mãn

17 tháng 7 2019

b. Số cách chọn 3 quyển sách là 5×6×8=240

Chọn B