K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

A=|a-3|+2a xét 2 trường hợp:

với a<0 ta có:  3-a+2a=3+a

với a>0 ta có: a-3+2a=3a-3=3(a-1). tích mk đi ủng hộ mk. mk vừa bị trừ điểm xong huhu

\(=\dfrac{a+1-1}{\sqrt{a+1}}\cdot\dfrac{a^2+3\sqrt{a+1}-2a+2a-a^2}{a}\)

\(=\dfrac{3\sqrt{a+1}}{\sqrt{a+1}}=3\)

a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)

\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)

\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)

=-a-1

b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)

\(=\left|3a-5\right|-2a+4\)

\(=5-3a-2a+4\)

=9-5a

c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)

\(=4a-3-\left|2a-1\right|\)

\(=4a-3-2a+1\)

\(=2a-2\)

d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)

\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)

\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)

\(=-a^2\)

17 tháng 6 2020

\(M=\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2a}-\sqrt{3b}\right)+\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)-2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\left(đkxđ:a,b\ge0;mau\ne0\right)\)[tự tìm cái sau :)) ]

\(VP=\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2}.\sqrt{a}-\sqrt{3}.\sqrt{b}\right)}{a\sqrt{2}+\sqrt{3ab}}+\frac{\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)}{a\sqrt{2}+\sqrt{3ab}}-\frac{2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

\(=\frac{2a+2a\sqrt{2}-2\sqrt{3ab}}{a\sqrt{2}+\sqrt{3ab}}+\frac{2\sqrt{3ab}-3b}{a\sqrt{2}+\sqrt{3ab}}-\frac{2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

\(=\frac{2a+2a\sqrt{2}-3b+2a\sqrt{a}}{a\sqrt{2}+\sqrt{3ab}}\)

mình làm được đến đây , bạn làm được tiếp thì làm =))

17 tháng 6 2020

M=\(M=6\sqrt{B\hept{\begin{cases}\\\end{cases}}3,6}\)

30 tháng 10 2023

a) \(H=\left(\dfrac{a-3\sqrt{a}}{a-2\sqrt{a}-3}-\dfrac{2a}{a-1}\right):\dfrac{1-\sqrt{a}}{a-2\sqrt{a}+1}\)

\(H=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)}-\dfrac{2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]:\dfrac{1-\sqrt{a}}{\left(\sqrt{a}-1\right)^2}\)

\(H=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]:\dfrac{-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)^2}\)

\(H=\dfrac{a-\sqrt{a}-2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}:\dfrac{-1}{\sqrt{a}-1}\)

\(H=\dfrac{-a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\cdot-\left(\sqrt{a}-1\right)\)

\(H=\dfrac{-\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot-\left(\sqrt{a}-1\right)\)

\(H=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\)

\(H=\sqrt{a}\)

b) Thay x = 2023 vào ta có: 

\(H=\sqrt{2023}\)

4 tháng 3 2016

\(A=\sqrt{\left(a-3\right)^2}+2a\)

\(=a-3+2a=3a-3=3.\left(a-1\right)\)

\(B=\sqrt{\left(a-5\right)^2}+5\)

\(=a-5+5=a\)

4 tháng 3 2016

\(A=\sqrt{\left(a-3\right)^2}+2a=a-3+2a=3a-3\)

\(B=\sqrt{\left(a-5\right)^2+5}=a-5+5=a\)

31 tháng 10 2021

\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

28 tháng 6 2021

`M=sqrt{(3a-1)^2}+2a-3`

`=|3a-1|+2a-3`

`=3a-1+2a-3(do \ a>=1/3)`

`=5a-4`

`N=sqrt{(4-a)^2}-a+5`

`=|4-a|-a+5`

`=a-4-a+5(do \ a>4)`

`=1`

`I=sqrt{(3-2a)^2}+2-7`

`=|3-2a|-5`

`=3-2a-5(do \ a<3/2)`

`=-2-2a`

`K=(a^2-9)/4*sqrt{4/(a-2)^2}`

`=(a^2-9)/4*|2/(a-2)|`

`=(a^2-9)/(2|a-2|)`

Nếu `3>a>2=>|a-2|=a-2`

`=>K=(a^2-9)/(2(a-2))`

Nếu `a<2=>|a-2|=2-a`

`=>K=(a^2-9)/(2(2-a))`

28 tháng 6 2021

\(M=\left|3a-1\right|+2a-3\)

\(a-\dfrac{1}{3}\ge0\)

\(\Rightarrow M=3a-1+2a-3=5a-4\)

\(N=\left|4-a\right|-a+5\)

\(4-a< 0\)

\(\Rightarrow N=a-4-a+5=1\)

\(I=\left|3-2a\right|-5\)

\(a-\dfrac{3}{2}< 0\)

\(\Rightarrow I=3-2a-5=-2a-2\)

K, Ta có : \(a-3< 0\)

\(\Rightarrow K=\dfrac{2\left(a^2-9\right)}{4\left|a-2\right|}=\dfrac{\left(a-3\right)\left(a+3\right)}{\left|2a-4\right|}\)
 

10 tháng 8 2015

Điều kiện: x \(\ne\) 1;  1/4 ; x \(\ge\) 0

\(A=1+\left(\frac{\left(2a+\sqrt{a}-1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\left(2a+\sqrt{a}-1\right).\sqrt{a}}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\right)\)

\(A=1+\left(\frac{\left(2a+\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)-\left(2a+\sqrt{a}-1\right)\left(1+\sqrt{a}\right).\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\right)\)

\(A=1+\left(\frac{\left(2a+\sqrt{a}-1\right)\left(a+\sqrt{a}+1-a-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\right)\)

\(A=1+\left(\frac{\left(2a+\sqrt{a}-1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\right)\)

\(A=1+\left(\frac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{2\sqrt{a}-1}\right)=1+\frac{-\sqrt{a}}{a+\sqrt{a}+1}=\frac{a+1}{a+\sqrt{a}+1}\)

Các bài tập dạng này hoàn toàn làm tương tự!!!