K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

a)Ta có:AD v/góc BC =>BC là trung trực của AD(đ/lý đkính và dây cung)

=> tam giác DBA cân tại B=>BDA=DAB(t/c)

Lại có EF//AD(cùng v/góc HC)

=>BEF=BDA=BFE=DAB

=> tam giác BEF cân tại B

b)Ta có: tam giác BEF cân tại B có BH là đường cao

=> BH cũng là trung tuyến

=>HE=HF

Mặt khác:FAE=90o (kề bù với BAC)

Xét tam giác EAF vuông tại A có AH là trung tuyến

=> HA=HF=HE

=>tam giác HAF cân

c)\(\Delta\) FHB có HFB+HBF=90o (FHB=90o)(3)

\(\left\{{}\begin{matrix}\text{HAF=HFA(HAF cân)(4)}\\HBF=ABO\left(đ.đ\right)\left(1\right)\end{matrix}\right.\)

Lại có:OB=OA=R

=>\(\Delta\)OBA cân tại O =>OBA=OAB(2)

Từ (1)(2)=>HBF=BAO(5)

Từ (3)(4)(5)=>HFB+HBF=BAO+HAF=90o=HAO

=>HA là tiếp tuyến của (O)(đpcm)

8 tháng 8 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy HA là tiếp tuyến của đường tròn (O)

3 tháng 4 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF cân tại B nên HE = HF

Tam giác AEF vuông tại A có AH là đường trung tuyến ứng với cạnh huyền nên: HA = HE = HF = (1/2).EF (tính chất tam giác vuông)

Vậy tam giác AHF cân tại H.

6 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là giao điểm của AD và BC

Vì BC là đường trung trực của AD nên theo tính chất đường trung trực ta có:

BA = BD

Tam giác BAD cân tại B có BI ⊥ AD nên BI là tia phân giác của góc ABD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF có BH là tia phân giác của góc EBF và BH ⊥ EF nên tam giác EBF cân tại B.

23 tháng 6 2017

Đường tròn

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

góc AGD=1/2*180=90 độ

=>GD vuông góc AH

=>GD//BC

b: ABHE nội tiếp

=>góc EHC=góc BAD

mà góc BAD=góc DCB

nên góc EHC=góc DCB

=>EH//CD

góc ACD=1/2*180=90 độ

=>AC vuông góc CD

=>EH vuông góc AC tại N

=>góc ANH=90 độ

a: Vì góc AEB=góc AHB=90 độ

=>AHBE nội tiếp

góc AGD=1/2*180=90 độ

=>AG vuông góc GD

=>GD//BC

b:

Xét ΔAHB vuông tại H và ΔACD vuông tạiC có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD

=>góc BAH=góc DAC

góc NAH+góc NHA

=góc ABE+góc BAE=90 độ

=>ΔAHN vuông tại N

9 tháng 3 2023

giúp câu c nha mn

 

29 tháng 10 2023

a: Xét (O) có

OI là một phần đường kính

AD là dây

OI\(\perp\)AD tại I

Do đó: I là trung điểm của AD

Xét ΔBAD có

BI là đường cao

BI là đường trung tuyến

Do đó: ΔBAD cân tại B

b: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó;ΔBAC vuông tại A

=>BA\(\perp\)EC

Xét tứ giác EHBA có

\(\widehat{EHB}+\widehat{EAB}=90^0+90^0=180^0\)

=>EHBA là tứ giác nội tiếp

=>E,H,A,B cùng thuộc 1 đường tròn

29 tháng 10 2023

thế còn c,d đâu anh ??? hình vẽ ko có làm còn thiếu, có trách nhiệm với người hỏi đi anh

20 tháng 12 2020

1) Vì BC là đường kính của (O) nên BC=2R

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=\left(2R\right)^2-R^2=3R^2\)

hay \(AB=R\sqrt{3}\)(đvđd)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot2R=R\cdot R\sqrt{3}\)

\(\Leftrightarrow AH=\dfrac{R^2\cdot\sqrt{3}}{2\cdot R}=\dfrac{R\sqrt{3}}{2}\)(đvđd)

Vậy: \(AB=R\sqrt{3}\)\(AH=\dfrac{R\sqrt{3}}{2}\)

2) Xét (O) có

OC là một phần đường kính

AD là dây

OC⊥AD tại H

Do đó: H là trung điểm của AD(Định lí đường kính vuông góc với dây)

\(HA=HD=\dfrac{AD}{2}\)

hay \(HA\cdot HD=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(HB\cdot HC=AH^2\)(2)

Từ (1) và (2) suy ra \(HA\cdot HD=HB\cdot HC\)(đpcm)

20 tháng 12 2020

ban co the giup minh 2 y cuoi khong?