Giair phương trình nghiệm nguyên dương: \(x+2y+2z=xyz\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(xyz+2z=x^2+2\Leftrightarrow z=\frac{x^2+2}{xy+2}\)
Do \(z\ge1\Rightarrow x\ge y\)
Xét hiệu: \(xy+2-x+2=\left(x+1\right)\left(y-1\right)+3>0\Rightarrow xy+2>x-y\) (do \(y\ge1\))
Gọi d là ước chung lớn nhất của x và xy+2
\(\Rightarrow\hept{\begin{cases}xy+2⋮d\\x⋮d\end{cases}}\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Xét d=2. Đặt \(2\left(x-y\right)=k\left(xy+2\right)\) (k là số tự nhiên)
Do x,y là các số nguyên dương và xy+2>x-y nên 2>k
\(\Rightarrow k\in\left\{1;0\right\}\)
Xét k=1 thì \(2\left(x-y\right)=xy+2\Rightarrow\left(x+y\right)\left(2-y\right)=6\)
Do x+y>0 nên 2-y>0 => 0<y<2 =>y=1 =>x=5 thay vào pt đầu ta đk z=27/7 (ko t/m)
Xét k=0 thì:\(x-y=0\Rightarrow x=y\) thay vào pt đầu ta đk z=1 thay z lại tìm đk x=y=1
Xét d=1
Đặt x-y=k(xy+2) (k là số tự nhiên)
Do xy+2>x-y nên k<1 =>k=0
làm tương tự trên ta tìm đk x=y=z=1
KL
Ta có:
\(xyz=x^2-2z+2\)
+) Nếu z = 1 thì :
\(xy=x^2\Rightarrow x=y=k\left(k\inℕ^∗\right)\)
Ta có ( k , k ,1) là một nghiệm của pt
+) Xét \(z\ge2\)
Theo giả thiết ta có:
\(2z-2=x\left(x-yz\right)\Rightarrow\left(2z-2\right)⋮x\Rightarrow2z-2=tx\left(t\in N\right);t=x-yz\)
Laij có: \(t=x-yz\Rightarrow yz=x-t\Rightarrow y=\frac{x-t}{z}=\frac{2\left(x-t\right)}{tx+2}\)
\(\Rightarrow2\left(x-t\right)\ge tx+2\Leftrightarrow\left(2-t\right)x\ge2\left(t+1\right)>0\)( vì x >0)
\(\Rightarrow2-t>0\Rightarrow t=1\)
Khi đó: \(y=\frac{2\left(x-1\right)}{x+2}=2-\frac{6}{x+2}< 2\)
\(\Rightarrow y=1\Rightarrow x=4;z=3\)
Bn tự KL nhé
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi