ΔABC vuông ở A có \(\frac{AB}{AC}\)=\(\frac{8}{15}\), BC= 51. Tính AB, AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AB; AC tỉ lệ với 8; 15
=> AB = 815815 AC
Ta có: tam giác ABC vuông tại A
=> BC2 = AB2 + AC2
=> 1022 =( 815815AC)2 + AC2
=> 10404 = 6422564225 . AC2 + AC2
=> 10404 = AC2. (64225+164225+1)
=> 10404 = AC2 . 289225289225
=> AC2 = 10404 : 289225289225 = 8100
=> AC2 = 902
=> AC = 90 cm
Ta có: AB = 815815AC
=> AB = 815.90815.90=48 cm
Vậy AB = 48 cm
AC = 90 cm
T I C K mk nha
Ta có:\(\Delta ABC\)vuông tại A
=> BC2 = AB2 + AC2 (định lí Pi-ta-go thuận)
Ta lại có:\(\frac{AB}{AC}=\frac{8}{15}\)=>\(\frac{AB}{8}=\frac{AC}{15}\)=>\(\frac{AB^2}{64}=\frac{AC^2}{225}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{BC^2}{289}=\frac{2601}{289}=9\)
Từ\(\frac{AB^2}{64}=9\)=>\(\sqrt{\frac{AB^2}{64}}=\sqrt{9}\)=>\(\frac{AB}{8}=3\)=> AB = 24 (cm)
Từ\(\frac{AC^2}{225}=9\)=>\(\sqrt{\frac{AC^2}{225}}=\sqrt{9}\)=>\(\frac{AC}{15}=3\)=> AC = 45 (cm)
Vậy AB = 24 cm; AC = 45 cm
Có \(\Delta\)ABC vuông tại A , áp dụng đl Py-ta-go , ta có :
BC2=AB2+AC2=512 =2601
Ta có :\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}=\frac{AB^2}{64}=\frac{AC^2}{225}\)
Áp dụng tính chất của dtsbn, ta có :
\(\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{2601}{289}=9\)
\(\Rightarrow\hept{\begin{cases}AB=9.8=72\\AC=15.8=120\end{cases}}\)
Xét ΔABC vuông tại A có
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)
\(\Leftrightarrow\dfrac{1}{100-AC^2}+\dfrac{1}{AC^2}=\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{AC^2+100-AC^2}{AC^2\left(100-AC^2\right)}=\dfrac{1}{16}\)
\(\Leftrightarrow100AC^2-AC^4=1600\)
\(\Leftrightarrow AC^4-100AC^2+1600=0\)
\(\Leftrightarrow AC^4-80AC^2-20AC^2+1600=0\)
\(\Leftrightarrow\left(AC^2-80\right)\left(AC^2-20\right)=0\)
=>\(AC=2\sqrt{5}\left(cm\right)\)
=>\(AB=4\sqrt{5}\left(cm\right)\)
=>AB/AC=2
f: AC/AB=4/3
nên AC=4/3AB=40/3(cm)
=>BC=50/3(cm)
=>AH=8(cm)
=>BH=6(cm)
=>CH=32/3(cm)
b: BH=36(cm)
CH=64(cm)
AB=60(cm)
AC=80(cm)
a) Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{51^2}{289}\)
\(\Rightarrow\frac{AB}{8}=\frac{AC}{15}=\frac{51}{17}\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
b) \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=300\left(cm^2\right)\)
Xét tam giác ABC vuông tại A theo định lí Py-ta-go ta đc
AB2+AC2=BC2=2601(1)
Lại có\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB^2}{AC^2}=\frac{64}{225}\)
\(\Rightarrow AC^2=\frac{AB^2.225}{64}\)
Thay vào (1) ta đc
\(AB^2+\frac{AB^2.225}{64}=2601\)
\(\Rightarrow\frac{AB^2.289}{64}=2601\Rightarrow AB^2=576\)
\(\Rightarrow\hept{\begin{cases}AB=\sqrt{576}=24\left(cm\right)\\AC^2=BC^2-AB^2=2025\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
Vậy ........
b, ta có \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)
tk mk nhé
Bài giải: Ta có: AB/AC = 8/15 => AB/8 = AC/15
Áp dụng định lí Pi-ta-go vào t/giác ABC , ta có:
BC2 = AB2 + AC2
=> 512 = AB2 + AC2
=> 2601 = AB2 + AC2
Áp dụng t/c của dãy tỉ số bằng nhau
Từ \(\frac{AB}{8}=\frac{AC}{15}\)=> \(\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{2601}{289}=9\)
=> \(\hept{\begin{cases}\frac{AB^2}{64}=9\\\frac{AC^2}{225}=9\end{cases}}\)=> \(\hept{\begin{cases}AB^2=9.64=576\\AC^2=9.225=2025\end{cases}}\)=> \(\hept{\begin{cases}AB=24\\AC=45\end{cases}}\)
Vậy ...
b) tự lm
\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}\)
\(\Leftrightarrow\left(\frac{AB}{8}\right)^2=\left(\frac{AC}{15}\right)^2=\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{BC^2}{289}=\frac{51^2}{289}=9\)
\(\Rightarrow+)\frac{AB^2}{64}=9\Rightarrow AB=24\left(cm\right)\)
\(+)\frac{AC^2}{225}=9\Rightarrow25\left(cm\right)\)
Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:
\(AB^2+AC^2=BC^2\) (định lí Py - ta - go).
=> \(AB^2+AC^2=51^2\)
=> \(AB^2+AC^2=2601\left(cm\right).\)
Ta có: \(\frac{AB}{AC}=\frac{8}{15}.\)
=> \(\frac{AB}{8}=\frac{AC}{15}.\)
=> \(\frac{AB^2}{64}=\frac{AC^2}{225}\) và \(AB^2+AC^2=2601\left(cm\right).\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{2601}{289}=9.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{AB^2}{64}=9\Rightarrow AB^2=576\Rightarrow AB=24\left(cm\right)\left(vìAB>0\right)\\\frac{AC^2}{225}=9\Rightarrow AC^2=2025\Rightarrow AC=45\left(cm\right)\left(vìAC>0\right)\end{matrix}\right.\)
Vậy \(AB=24\left(cm\right);AC=45\left(cm\right).\)
Chúc bạn học tốt!