K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2022

Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm

24 tháng 11 2023

giúp mk đi, mk gấp lắm

 

24 tháng 11 2023

1-7=6

 

8 tháng 9 2019

Cho 4 số a,b,c,d khác 0 thỏa mãn abcd=1 và a+b+c+d=1/a+1/b+1/c+/1d. chứng minh rằng tồn tại tích hai số trong 4 số bằng 

28 tháng 2 2021

`1/a+1/b+1/c=1/(a+b+c)`

`<=>(a+b)/(ab)+(a+b)/(c(a+b+c))=0`

`<=>(a+b)(ab+ac+bc+c^2)=0`

`<=>(a+b)(a+c)(b+c)=0`

`=>` $\left[ \begin{array}{l}a=-b\\b=-c\\c=-a\end{array} \right.$

`=>` PT luôn tồn tại 2 số đối nhau

10 tháng 1 2023

Vai trò a,b không đổi ta giả sử a > b

Ta có : |ab + 1| > |a - b|

=> |ab + 1|2 > |a - b|2 

<=> (ab)2 + 2ab + 1 > a2 + b2 - 2ab

<=> (ab)2 - a2 - b2 + 1 + 4ab > 0

<=> (a2 - 1)(b2 - 1) + 4ab > 0 (1)

Nếu a \(\ge\) b \(\ge\)1 hay -1 \(\ge\) a \(\ge\) b thì (1) luôn đúng

Nếu -1 \(\le\) b \(\le\) a \(\le\) 1 và ab \(\ge\) 0 thì

(a2 - 1)(b2 - 1) > 0 ; ab > 0 => (1) luôn đúng 

Nếu -1 \(\le\) b \(\le\) a \(\le\) 1và ab \(\le\) 0  (2)

Khi đó nếu trong 5 số thực đó chỉ có số không âm

=> (2) không xảy ra => (1) luôn đúng 

Nếu dãy trên tồn tại ít nhất một số thực a < 0 hay nhiều hơn 

thì (1) luôn đúng do khi đó luôn tồn tại ít nhất cặp số ab > 0  và (2) không xảy ra 

=> ĐPCM 

 

13 tháng 7 2017

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow a+b+c-ab-bc-ca=0\)

\(\Leftrightarrow a+b+c-ab-bc-ca+abc-1=0\)

\(\Leftrightarrow\left(a-ac\right)+\left(b-bc\right)+\left(-ab+abc\right)+\left(c-1\right)=0\)

\(\Leftrightarrow-a\left(c-1\right)-b\left(c-1\right)+ab\left(c-1\right)+\left(c-1\right)=0\)

\(\Leftrightarrow\left(-a-b+ab+1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\left[b\left(a-1\right)-\left(a-1\right)\right]\left(c-1\right)\)

\(\Leftrightarrow\left(b-1\right)\left(a-1\right)\left(c-1\right)=0\)

\(\Rightarrow\)\(\left[{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)(đpcm)