K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

Hình thiếu nhé ( góc CMD = 90 dộ)

a: Xét ΔDBC có góc DBC=góc DCB

nên ΔDBC cân tại D

=>DB=DC

b: Xét ΔDAB vuông tại A và ΔDHC vuông tại H có

DB=DC

góc ADB=góc HDC

=>ΔDAB=ΔDHC

=>góc HCD=góc ABD=góc BCA
=>CA là phân giác của góc BCH

c: Xét ΔBMC có

BH vừa là đường cao, vừa là phân giác

=>ΔBMC cân tại B

=>BH là trung trực của MC

13 tháng 1 2019

B H C A d b A B D C E

1.Vẽ AH \(\perp\)BC;H\(\in\)BC

+, Xét D nằm trên đoạn thẳng HC 

\(\Delta HAB\)có \(\widehat{H}\)= 90Theo định lý Pytago ta có:

\(AH^2+BH^2=AB^2\Rightarrow AH^2=c^2-BH^2\)

\(\Delta HAD\)có \(\widehat{H}\)=900,theo định lý Pytago tacó:

\(AH^2+DH^2=AD^2\Rightarrow AH^2=d^2-DH^2\)

Do đó \(d^2-DH^2=c^2-BH^2\Rightarrow d^2=c^2+DH^2-BH^2\)

\(\Rightarrow d^2=c^2+BD\left(DH-BH\right)\Rightarrow d^2n=c^2n+mn\left(DH-BH\right)\)

Chứng minh tương tự ta có:

\(d^2m=b^2m+mn\left(-DH-CH\right)\)

Ta có: \(d^2m+b^2m+c^2n+mn\left(-DH-CH+DH-BH\right)\)

          \(d^2\left(m+n\right)=b^2m+c^2n+mn\left(-CH-BH\right)\)

         \(d^2a=b^2m+c^2n-amn\)

+, Xét D nằm trên đoạn thẳng HB

Chứng minh tương tự trên ta cũng có \(d^2a=b^2m+c^2n-amn\)

2.\(\widehat{ADC}>\widehat{ABC}\) (ADC là góc ngoài của tam giác ABD)

Do đó vẽ E trên cạnh AC sao cho góc ADE =góc ABC

ta có AE<AC

XÉT tam giác ABD và tam gác ADE có : góc BAD = góc DAE(AD phân giác)

                                                                 góc ABD=góc ADE

do đó \(\Delta ABD\infty\Delta ADE\Rightarrow\frac{AD}{AE}=\frac{AB}{AD}\Rightarrow AD^2=AB.AE\)

do đó \(AD^2< AB.AC\)

6 tháng 11 2018

Đề bài sai vì:

AC=CD là đương nhiên vì là hai cạnh đối nhau của hbh (t/c hbh)

=> Dữ kiện đúng phải là AB=BC hoặc AB=AD

a: Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{BM}=\dfrac{4}{6}=\dfrac{2}{3}\)

b: Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\left(1\right)\)

Xét ΔAMC có 

ME là đường phân giác ứng với cạnh AC

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)

Ta có: M là trung điểm của BC

nên MB=MC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

c: Xét ΔABC có 

\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

nên DE//BC