cho tam giác ABC vuông tại A,tia phân giác AD.tính độ dài cạnh AB,AC biết DB=15cm,DC=12cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔABC có AD là phân giác
nen AB/BD=AC/CD
=>AB/3=AC/4
Đặt AB/3=AC/4=k
=>AB=3k; AC=4k
Ta có: \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow25k^2=35^2\)
=>k2=49
=>k=7
=>AB=21cm; AC=28cm
A B C D E F
a)Xét \(\Delta ABC\) vuông tại A có :
\(BC^2=AB^2+AC^2\) (định lý pytago)
\(225=AB^2+144\)
\(\Rightarrow AB^2=225-144\)
\(AB^2=81\)
AB = 9cm
b)Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E có :
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
=>\(\Delta ABD\) =\(\Delta EBD\) (ch-gn)
=>\(\widehat{ADB}=\widehat{EDB}\)
=> DB là tia phân giác của \(\widehat{ADE}\)
c)M mình ko biết ở đâu nên mình ko làm nhé
Vì EF // BD nên \(\widehat{CFE}=\widehat{CDB}\)
Có : \(\widehat{CFE}+\widehat{EFD}=180^o\)
\(\widehat{CDB}+\widehat{BDA}=180^o\)
mà \(\widehat{CFE}=\widehat{CDB}\)
=> \(\widehat{EFD}=\widehat{BDA}\)
mà \(\widehat{BDA}=\widehat{BDE}=\widehat{DEF}\)
=> \(\widehat{EFD}=\widehat{DEF}\) => \(\Delta DEF\) cân tại D
d) Có : \(AB=BE\) (\(\Delta ABD\) =\(\Delta EBD\))
=> \(\Delta ABE\) cân tại B
mà BD là đường phân giác của góc B
=> BD là đường trung trực của AE
a) Do 92+122=152 nên là tam giác vuông( định lý pytago)
b) Do B là trung điểm của đoạn AD nên AB và BD đối nhau. Suy ra AD vuông góc AC.
Lại thấy: B là trung điểm AD(gt) nên AD=2AB=18(cm)
Xét tan giác vuông ACD(cmt). Áp dụng định lí Pytago có:
AD2+AC2=DC2
<=>182+152=DC2
<=>324+225=DC2
<=>DC2=549(cm)
<=>DC=\(3\sqrt{61}\left(cm\right)\)
Vậy...
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔABD=ΔEBD
Suy ra: BA=BE
b: \(BC=\sqrt{12^2+15^2}=3\sqrt{41}\left(cm\right)\)
c: \(\widehat{ADE}=180^0-60^0=120^0\)
d: Ta có: DA=DE
mà DE<DC
nên DA<DC
Bạn tự vẽ hình nhé bạn.
Xét \(\Delta ABC\)có AD là phân giác \(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}\)
mà \(BD=3cm\); \(DC=4cm\)\(\Rightarrow\frac{AB}{AC}=\frac{3}{4}\)\(\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
Vì \(\Delta ABC\)vuông tại A nên theo định lý Pytago ta có: \(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2+AC^2=\left(BD+DC\right)^2\)\(\Rightarrow AB^2+AC^2=\left(3+4\right)^2\)\(\Rightarrow AB^2+AC^2=7^2=49\)
Từ \(\frac{AB}{3}=\frac{AC}{4}\)\(\Rightarrow\left(\frac{AB}{3}\right)^2=\left(\frac{AC}{4}\right)^2=\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{9+16}=\frac{49}{25}\)
\(\Rightarrow AB^2=\frac{49}{25}.9=\frac{441}{25}\)\(\Rightarrow AB=\pm\frac{21}{5}\)
\(AC^2=\frac{49}{25}.16=\frac{784}{25}\)\(\Rightarrow AC=\pm\frac{28}{5}\)
Vì \(AB>0\); \(AC>0\)\(\Rightarrow AB=\frac{21}{5}\)và \(AC=\frac{28}{5}\)
Vậy \(AB=\frac{21}{5}\) và \(AC=\frac{28}{5}\)