Tính \(A=\left(36-\frac{36}{7^{100}}\right):\left(\frac{1}{7^1}+\frac{1}{7^2}+...+\frac{1}{7^{99}}+\frac{1}{7^{100}}\right)\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
27 tháng 1 2015
a)S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007
=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006
=>(7-1)S=6-(1/7)^2007
=>S=1-(-1/7^2007/6)
3 tháng 4 2017
A=\(\frac{\left(1+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
A=\(\frac{\left(1+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).0}{1-2+3-4+...+99-100}\)
A= 0
KẾT QUẢ ĐÚNG 100%
27 tháng 2 2018
Ta có :
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1.2.2.3.3.4.....99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1^2.2^2.3^2.4^2.....99^2}.\frac{1}{100}\)
\(=\)\(\frac{1}{100}\)
Đặt \(E=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}+\frac{1}{7^{100}}\)
\(\Rightarrow7E=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}+\frac{1}{7^{99}}\)
\(\Rightarrow7E-E=\left(1+\frac{1}{7}+...+\frac{1}{7^{98}}+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6E=1-\frac{1}{7^{100}}\)
\(\Rightarrow E=\frac{1-\frac{1}{7^{100}}}{6}\)
\(\Rightarrow A=\left(36-\frac{36}{7^{100}}\right):\frac{1-\frac{1}{7^{100}}}{6}\)
\(\Rightarrow A=36\left(1-\frac{1}{7^{100}}\right).\frac{6}{1-\frac{1}{7^{100}}}\)
\(\Rightarrow A=36.6=216\)