số giá trị của x thỏa mãn :x mũ 2 +x=0 giúp mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2\ge0\Rightarrow x^2-2x+1\ge0\Rightarrow x^2+1\ge2x\)
\(\left(y-2\right)^2\ge0\Rightarrow y^2-4y+4\ge0\Rightarrow y^2+4\ge4y\)
\(\left(z-3\right)^2\ge0\Rightarrow z^2-6z+9\ge0\Rightarrow z^2+9\ge6z\)
Do đó: \(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x.4y.6z=48xyz\)
Dấu "=" xảy ra khI: \(\hept{\begin{cases}x-1=0\\y-2=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
Vậy \(C=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^3}=\frac{6^2}{6^3}=\frac{1}{6}\)
Chúc bạn học tốt.
\(A=\dfrac{1}{x}+\dfrac{2}{2\sqrt{xy}}\ge\dfrac{1}{x}+\dfrac{2}{x+y}=2\left(\dfrac{1}{2x}+\dfrac{1}{x+y}\right)\ge2.\dfrac{4}{2x+x+y}=\dfrac{8}{3x+y}\ge\dfrac{8}{4}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
\(x^2=2^4\)
nên \(x^2=16\)
=>x=4(loại) hoặc x=-4(nhận)
2. GIẢI
Ta có : \(\left(-2a^{ }\right)^3\).\(\left(3b^{ }\right)^2\)
Thay a=-1;b=-3 ta được:
\(\left[\left(-2\right).\left(-1\right)\right]^3\).\(\left[3.\left(-3\right)\right]^2\)=\(2^3.\left(-9\right)^2\)=\(8.81\)=\(648\)
1. GIẢI
Ta có : (x-1)(x+2)=0
=>\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=0+1\\x=0-2\end{cases}}\)=>\(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy \(x\in\){-2;1}
\(x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy \(x=-1\)hoặc \(x=0\)
\(x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)